


## **Fitting Distributions**

This guide provides information on fitting various continuous or discrete distributions to data.

## Fitting One Continuous Distribution

- 1. From an open JMP data table, select **Analyze > Distribution**.
- 2. Select one or more continuous variables from **Select Columns**, click **Y**, **Columns**, then click **OK**. Here we chose the variable 'World Gross'
- 3. Select **Continuous Fit** from the red triangle for the variable and select a distribution (LogNormal was selected in the example below).
- 4. In the resulting fitted distribution output, click on the red triangle and select **Goodness of Fit** (shown) or **Diagnostic Plot** to assess the fit of the distribution.



The small *p*-value suggest that the LogNormal Distribution does not provide good fit to the data.

## Fitting All Continuous Distributions

Select **Continuous Fit**, then **Fit All** from the red triangle for the variable. JMP will compare available continuous distributions. Note: The distribution with the lowest AIC value provides the best fit to the data. Goodness of Fit tests can be performed by selecting **Goodness of Fit** under the Red Triangle for the Fitted Distribution output.

|                                  | ⊿ Compare Distributions |                  |  |           |             |             |           |                  |
|----------------------------------|-------------------------|------------------|--|-----------|-------------|-------------|-----------|------------------|
|                                  | Show                    | Distribution     |  | AICc ^    | AICc Weight | .2 .4 .6 .8 | BIC       | -2*LogLikelihood |
| 1                                | $\checkmark$            | Weibull          |  | 1532.1905 | 0.6163      |             | 1537.7986 | 1528.094         |
| 0 200 400 600 800 1000 1200 1400 |                         | Gamma            |  | 1533.1383 | 0.3837      |             | 1538.7463 | 1529.042         |
|                                  |                         | Exponential      |  | 1550.7541 | 0.0001      |             | 1553.5744 | 1548.722         |
|                                  |                         | SHASH            |  | 1555.4559 | 5.5e-6      |             | 1566.5388 | 1547.130         |
|                                  |                         | Johnson Su       |  | 1565.2096 | 0           |             | 1576.2925 | 1556.884         |
|                                  |                         | Lognormal        |  | 1568.75   | 0           |             | 1574.3581 | 1564.65          |
|                                  |                         | Normal 2 Mixture |  | 1604.4369 | 0           |             | 1618.2052 | 1593.94          |
|                                  |                         | Normal 3 Mixture |  | 1604.6992 | 0           |             | 1626.3054 | 1587.489         |
|                                  |                         | Student's t      |  | 1634.5779 | 0           |             | 1642.9405 | 1628.384         |
|                                  |                         | Cauchy           |  | 1634.6055 | 0           |             | 1640.2136 | 1630.509         |
|                                  |                         | Normal           |  | 1745.3687 | 0           |             | 1750.9767 | 1741.272         |

## Fitting Discrete Distributions

If the continuous variable contains only integer values, four discrete distributions are available under **Discrete Fit**.

| Continuous Fit | • |                       |
|----------------|---|-----------------------|
| Discrete Fit   | • | Fit Poisson           |
| Remove         |   | Fit Negative Binomial |
|                | _ | Fit Binomial          |
|                |   | Fit Beta Binomial     |

Visit Basic Analysis > Distributions > Options for Continuous Variables > Fit Distributions in JMP Help to learn more