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Modeling Gold Prices
ARIMA/ARMA Models, Model Comparison

Key ideas:

The case study deals with univariate time series modeling, in which a time series is modeled using its
own past values. Hence, these models use only one data series. Univariate models are specialized
models, where past values (or lags) of a series are considered as independent variable. ARIMA/ARMA is
a popular univariate model, used extensively for analyzing the characteristics and forecasting time series
data. This study analyzes time series data with JIMP.

Background

Hari, a research assistant at a leading university, has been asked by his professor to prepare a report on
gold prices in the United States. The professor wants Hari to look at the price of gold over a five-year
period, analyze the characteristics of gold prices and suggest a suitable univariate model that fits the
data.

The Task
Hari is entrusted with the following tasks:

Collect daily gold prices for a five-year period.
Study the unit root property of the data.
Identify a suitable univariate model.

Estimate the parameters of the best fit model.
Perform diagnostic checking of the model.

The Data GP.jmp

Hari decided to use daily gold prices for a period of five years from January 2016 to December 2020. The
data was collected from Yahoo Finance. It contained 1,245 observations of the price of gold in USD per
troy ounce. The data set has two series: date and daily gold prices.

Date Day on which the gold price is considered
GP Gold price on a specific date/day

Gold price is a continuous time series variable, whereas the date is time variable.



Analysis
Descriptive statistics

Let's explore the data using distribution and Graph Builder in JIMP.

Exhibit 1 Summary Statistics of Gold Price

4 = Distributions

4 =GP
— A4 =|Summary Statistics
F— ] ¢ F——"\taonmee Mean 1288.2754
Std Dev 217.49777
Std Err Mean 6.1641065

Upper 95% Mean 1400.3686
Lower 95% Mean 1376.1822

N 1245
Skewness 1.3332672
Kurtosis 0.6892532
Minimum 10739
Maximum 2051.5

1200 1400 1600 1800 2000

To create, Analyze>Distribution>Y = GP>OK. Under the red triangle next to Distributions, select Stack to align the output
horizontally. Under the red triangle next to Summary Statistics, select Customize Summary Statistics and then N, Skewness,
Kurtosis, Minimum and Maximum. Click OK.

Exhibit 2 Movement of Daily Gold Price (2016-2020)

4 = Graph Builder
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To create, Graph>Graph Builder>Y = GP, X = Date. Select line graph from the chart options. Click Done.

The basic descriptive characteristics of the data are presented in Exhibit 1 and the graph showing
movement of gold prices during the five years is given in Exhibit 2. The gold prices fluctuated between
$1,073 and $2,051 during the five years, with a mean of $1,388 and standard deviation of $217. Exhibit 2
shows an upward trend in prices during this period, especially after 2019.



Stationarity of the data

Stationarity of the data series is a prerequisite for most of the econometric models. From Exhibit 2, it is
evident that the gold price is not a stationary series. In order to confirm the same, the augmented Dickey-
Fuller (ADF) test is used.

Exhibit 3 ADF Test for Gold Price

Time Series GP
2100 Mean 1388.2754
128[[)]3 Std 217.4104
'IED[] N 1245
GP 1683 Zero Mean ADF 1.5825083
1500 Single Mean ADF  -0.400683
]I:igg Trend ADF -1.515281
1200
1100
0 249 498 747 096 1245

Row

To create, Analyze>Specialized Modeling>Time Series>Y = GP, X, Time ID = Date. Click OK.

The null hypothesis for the ADF test is that the series has unit root, or the series is non-stationary. The
ADF test returns three test statistics:

e Zero Mean ADF: A test against a random walk with zero mean.
e Single Mean ADF: A test against a random walk with a non-zero mean.
e Trend ADF: A test against a random walk with a non-zero mean and a linear trend.

The test statistic is expected to be negative; therefore, it must be more negative (less) than the critical
value for the hypothesis to be rejected. The values shown for the Zero Mean, Single Mean and Trend
ADF in JMP are the Tau statistics associated with the Dickey-Fuller test. Because Dickey and Fuller
produced tables for the critical values associated with the distribution of the Tau statistic, and because the
associated p-values would only be approximations, the JMP developer decided not to display
approximate p-values for these statistics. The critical values for the ADF test at a 5% level are -2.86
without trend and -3.41 with trend for large samples.

The result of the ADF test for gold prices is given in Exhibit 3. The test statistic of all three ADF tests are
above the critical value of 5%. Hence, the null hypothesis is accepted, and it is concluded that the gold
price series is non-stationary.

Differencing the data

Differencing is a technique used for transforming a non-stationary data series to stationary. Most of the
financial market data becomes stationary on first differencing. We shall create a new variable called
FDGP, which is the first difference of the gold prices; it can be determined through multiple ways in JMP.

The easiest way is by selecting the column GP, right-click and then choose New Formula Column>Row>
Difference. This will create a new column, Difference [GP], which will have the first difference values of
GP. You can rename the column as FDGP by double-clicking the column header. The differenced series

is saved as FDGP.

Now let us explore the FDGP using Graph Builder.



Exhibit 4
4 = Graph Builder
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To create, Graph>Graph Builder>Y = FDGP, X = Date. Select line graph from the chart options and click Done.
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From Exhibit 4, it can be observed that the series is stationary. However, to confirm the same, an ADF

test is performed.

Exhibit 5 ADF Test for First Difference of Gold Prices

Time Series FDGP

FDGP

249

495

47

995

Mean 0.6558682
Std 13.891355
M 1244
Zerc Mean ADF -35.81164
Single Mean ADF  -35.87783
Trend ADF -35.87602

To create, Analyze>Specialized Modeling>Time Series>Y = FDGP, X, Time ID = Date. Click OK.

Exhibit 5 gives the results of the ADF test of FDGP. Since the test statistics are all less than the critical
value, the null hypothesis is rejected. So, we can conclude that the first difference of gold prices is a

stationary series.



ARIMA & ARMA models

An autoregressive (AR) process is one where the current value of a variable depends on its past values.
The number of past values (lags) that determine the current value is known as the order of the AR model.
Thus, an AR (3) model would use three past values of the data for modeling the current value. In more
general terms an AR(p) model is specified as:

p
Ye= a+ Zﬁi}’t—i + u
i=1

A moving average (MA) process is one where the current value of a variable depends on the past and
current values of the white noise disturbance terms (error terms). The number of past white noise terms
included in the model is known as the order of the MA model. An MA (g) model with (q) lags is specified
as:

q
Y= a+ Zwiut—i + U
i=1

The autoregressive moving average (ARMA) process is a combination of the AR and MA processes. In
the ARMA model, the current value of a variable depends on the past values of the variable itself and the
past and current white noise disturbance terms. ARMA (p,q) model represents an ARMA process with (p)
lags of AR terms and (q) lags of MA terms. The model is specified as:

p q
Ye= a+ Zﬁi}’t—i + z ity + U
i=1 i=1

Building ARMA models involves three steps: identification, estimation and diagnostic checking.
Identification deals with choosing the right order of the model that captures the dynamic features of the
data. The order of the model can be decided via a graphical method by plotting the autocorrelation
function (ACF) and partial autocorrelation function (PACF). Another method for deciding the order is to
use information criteria. Once the order is identified, the parameters of the model are estimated. Finally,
diagnostic checking is done by testing the residuals of the selected model for autocorrelation.

An ARMA model is suitable for stationary data. Using non-stationary data for modeling is called the
autoregressive integrated moving average (ARIMA) model, where the order of integration is built into the
model. For an ARIMA (p,d,q) model, (d) represents the order of integration, (p) represents the lags of AR
term, and (q), the lags of MA term. So, if the data turns stationary on first differencing, (d) would be
specified as 1. For example, ARIMA (2,1,2) would be used for modeling a time series that is integrated of
first order; it will have two lags of AR and MA terms each.

ACF and PACF

Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots are used to determine the
order of the model. The ACF of a non-stationary series does not decay. In case of a stationary series, if
ACF geometrically decays and PACF has significant spikes up to a specific lag, an AR model is the best
fit. If ACF exhibits significant spikes up to a specific lag and PACF geometrically decays, an MA model is
fitted. Alternatively, if both ACF and PACF plots are geometrically decaying, an ARMA model is
considered suitable.



Exhibit 6 ACF and PACF Plots for Gold Prices

Time Series Basic Diagnostics
lag AutoCorr -8-.6-4-20.2 .46.8 LungBoxQ pValue Lag Partial 8.6420.2.46.8

0 1.0000 | . . 0 1.0000
1 0.9950 | 123549 <.0001* 1 0.9950 |
09901 [ — 2450097 2 00155
3 09852 [ 367335 3 -0.0067
4 09805 | % 487599 - 4 0.0097
5 09760 " 606860 5 00203
6 09717 725181 « 6 00118
7 09675 842578 7 00154
8 09835 959096 8 00120
a9 0957 [ | 107477 9 00150
10 0958 ‘ 118963 10 0.0049
1 09521 | 130367 - 11 0.0062
12 0.0482 | 141687 12 -0.0128
13 0940 ‘ 152918 - 13 -0.0277
14 0938 | 164058 14 -0.0059
15 09352 175099 15 -0.0327
16 08310 ‘ % 186040 - 16 00184
17 09270 | 196912 17 0.0227
18 0923 207698 - 18 0.0320
19 09197 | % 218408 19 0.0079
20 09164 ‘ 229051 20 0.0272
21 09135 239636 - 21 0.0393
22 09104 | % 250157 22 -0.0161
23 09073 260614 < 23 -0.0039
24 00037 | % 270099 24 -0.0358
25 0.9002 281311 « 25 -0.0043

To create, Analyze>Specialized Modeling>Time Series>Y = GP, X, Time ID = Date. Click OK.

Exhibit 7 ACF and PACF Plots for First Difference of Gold Prices

Time Series Basic Diagnostics
Lag AutoCorr -8-6-4-20.2 .4.6.8 Ljung-BoxQ p-Value Lag Partial -.8-6-4-20.2 4.6 .8

0 1.0000 5 5 0 1.0000
1 -0.0185 (i 04265 0.5137 1 -0.0185
2 0.0321 1.7089 0.4255 2 0.0317
3 -0.0065 17622 0.6232 3 -0.0034
4 -0.0749 [ 8.7839 4 -0.0763
5 -0.0623 I 12.6446 5 -0.0651
6 -00722 [ 20.1694 6 -0.0707
7 -0.034 21.6480 7 -0.0352
] 0.0076 21.7205 & 0.0036
9 0.0163 22,0555 9 0.0082
10 0.0296 23.1573 10 0.0149
11 0.0312 24,3831 11 0.0179
12 0.0667 ] 20.9740 12 0.0594
132 0.0041 20,0052 12 0.0046
14 0.0112 30.1538 14 0.0133
15 -0.0182 30.5725 15 -0.0084
16 -0.0171 30.9409 16 -0.0024
17 -0.0904 [l 41.2538 17 -0.0788
18 -0.0048 41.2825 18 0.0022
19 -0.0330 42.6635 19 -0.0266
20 -0.0174 43.0472 20 -0.0242
21 -0.0016 43.0502 21 -0.0190
22 0.0308 44,2556 22 0.0157
23 0.0265 45.1436 23 0.0091
24 -0.0072 45.2112 24 -0.0232
25 0.0311 46.4304 25 0.0243

To create, Analyze>Specialized Modeling>Time Series>Y = FDGP, X, Time ID = Date. Click OK.

The ACF and PACF plots of gold prices (GP) and first difference (FDGP) are shown in Exhibits 6 and 7.

We can see that the ACF plot of GP in Exhibit 6 does not decay since GP is a non-stationary series. The
ACF and PACF of FDGP shown in Exhibit 7 do not show any significant spikes up to the fourth lag. The
pattern of decaying of ACF and PACF is also not clear. Unfortunately, while using real data, a clear
pattern is rarely seen, making it difficult to interpret ACF and PACF plots. In such cases, the order of the
model is determined using information criteria.



Model building

We shall build various ARMA models using the first difference of gold prices (FDGP), which is the
stationary series, by specifying the parameters of autoregressive order (p) and moving average order (q).
The differencing order (d) is set at O for all these models. The models estimated here include AR (1), MA
(1), ARMA (1,1), AR (2), MA (2), ARMA (1,2), ARMA (2,1), ARMA (2,2), AR (3), MA (3), ARMA (1,3),
ARMA (2,3), ARMA (3,1), ARMA (3,2) and ARMA (3,3).

Exhibit 8 ARMA/ ARIMA Model Building

=¥ ARIMA Specification X

Specify ARIMA Model

ARIMA

p, Autoregressive Order | 0
d, Differencing Order 0
g, Moving Average Order | 0

¥

Prediction Interval 095

Intercept
Constrain fit

|Estimate || Cancel H Help

To create, Analyze>Specialized Modeling>Time Series>Y = FDGP, X, Time ID = Date. Click OK. Under the red triangle next to
Time Series FDGP, choose ARIMA for the option to specify the values for p and g. Once you have specified them, click Estimate.
Select the ARIMA option again from the dropdown and repeat the process to build different ARMA models.

In this case, ARMA models are estimated using the first difference of gold prices (FDGP), which is the
stationary series.

Model comparison and identification

Once a model is fit, the Model Comparison report is produced by JMP. This report contains the Model
Comparison table and plots for the models. Each time a new model is fit, a new row is added with unique
color coding. The Model Comparison table summarizes various fit statistics for each model fitted to the
same time series data, which can be used for selecting the most suitable model.

Information criteria are measures of model fit, which include a penalty for adding extra parameters.
Hence, the objective is always to minimize the value of information criteria. Among several criteria
available, the most popular is the Akaike’s information criteria (AIC). The AIC values of these model are
compared to identify the most suitable one, which would be the one with the lowest AIC value. By default,
JMP sorts the models by the AIC statistic in increasing order. The various ARMA models, along with the
fit indices, are shown in Exhibit 9.



Model Comparison

Exhibit 9 Model Comparison Using AIC
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Model
ARMA(2, 2)

— ARMA(2, 3)
— ARMA(1,3)
— ARMA(2, 2)
— AR{1)
— MA(T)
— ARMA(2,2)
— MA[2)
— AR(2)
— ARMA(1. 1)

MA(3)

— ARMA(1,2)
— AR{3)

ARMA(Z, 1)
ARMA(3, 1)

DF  Variance
1238 189.79824
1238 189.81537
1239 192.13841
1239 191.65677
1242 193.21435
1242 193.21831
1237 192.37913
1241 19314348
1241 193.17525
1241 193.30601
1240 193.29464
1240 193.29843
1240 193.32349
1240 193.23006
1239 193.3936

AIC
10062 421
10062.532
10076.562
10077473
10080485
10080.511
10080659
10081.030
10081.233
10082.074
10083.000
10083.024
10083.198
10083.227
10084.647

SBC RSquare
10092177 0.021
10093.269 0.021
10102.192 0.008
10103104 0.008
10090737 0.000
10090.763 0.000
10116542 0.008
10096408 0.002
10096.612 0.001
10097 452 0.001
10103504 0.002
10103 529 0.002
10103.702 0.001
10103732 0.001
10110277 0.002

-2LoglH
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10074647

Weights
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0.485564
0.000436
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0.000061
0.000061
0.000056
0.000047
0.000042
0.000028
0.000017
0.000017
0.000016
0.000016
0.000008
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It can be observed from Exhibit 9 that ARMA (3,2) has the minimum AIC value of 10062.421. Hence, the
most suitable ARMA model for gold prices is identified as ARMA (3,2).

Model estimation: ARMA or ARIMA?

Once the model has been identified, the next step is to estimate the parameters of the model. Whether to
use an ARMA model or an ARIMA model is irrelevant since both of the models would give the same
result. Let us try this by estimating ARMA (3,2) using FDGP and ARIMA (3,1,2) using GP. The order of
integration (d) is specified as 1 in the ARIMA model as the gold prices are integrated of first order. The
parameter estimates of ARMA (3,2) model and ARIMA (3,1,2) model are shown in Exhibit 10.

Exhibit 10 ARMA (3,2) Model for FDGP and ARIMA (3,1,2) Model for GP
Model: ARMA(3, 2)

Model Summary

DF

Sum of Squared Errors
Variance Estimate
Standard Deviation
Akaike's'A' Information Criterion  10062.4208
Schwarz's Bayesian Criterion

RSquare
RSquare Adj
MAPE

MAE

-2Leglikelihood

Parameter Estimates

Term Lag  Estimate

AR1

ARZ

AR3

MA1
MAZ
Intercept

1
2
3
1
2
0

1.502491
-0.703897
-0.084733

1.537327
-0.778408

0.654674

1238

Stable

Yes

234970224 Invertible Yes

180.708242
13.7767283

10093.1773
0.02111571
0.01716222

9.15533566
10050.4208

Std Error tRatio Prob>|t]
0.0913538 1645 <.0001
0.0939864 -7.49 0
0.0329148  -2.57
0.0884367 17.38
0.0744297 -1046

0.3291510 1

99

Constant

Estimate
* 0.18732751 0.65467366

Mu

Model: ARIMA(3, 1, 2)

Model Summary

DF

Sum of Squared Errors

Variance Estimate

Standard Deviation

Akaike's ‘A" Information Criterion
Schwarz's Bayesian Criterion

RSquare
RSquare Adj
MAPE

MAE

-2Loglikelihood

Parameter Estimates

Term Lag Estimate

AR1

AR2

AR3

MA1
MA2
Intercept

1
2
3
1
2
0

1238 Stable  Yes
234970224 Invertible Yes
189.793242
13.7767283
10062.4208
10093.1773
0.99600022
0.99593407
0.64331064
9.18533566
100504208

Constant

5td Error tRatio Prob>[t] Estimate Mu
1502491 0.0913539 1645
-0.703897 0.0939864 -7.49
-0.084733 00329148 -2.57
1537327 0.0884367 17.38
-0.776408 0.0744297 -1046
0.654674 0.3291510 1.99

0001% 0.18732751 0.65467366

To create, Analyze>Specialized Modeling>Time Series>Y = FDGP, X, Time ID = Date. Click OK. Under the red triangle next to
Time Series FDGP, choose ARIMA. Put p = 3 and q = 2 to estimate the ARMA (3,2) model. Similarly build the ARIMA (3,1,2) model
using GP data.

In Exhibit 10, we can observe that the parameter estimates for both the models are the same. Hence, the
choice of ARMA or ARIMA is irrelevant in terms of correctly specifying the order of integration. Exhibit 10
also shows that Prob>|t| values for all the AR and MA terms are less than 0.05. Hence, the null



hypothesis that the lags of AR and MA terms are not significant is rejected at 5%. It is evident that all the
three AR terms and two MA terms are statistically significant in the model.

Diagnostic checking

Diagnostic checking of the model is done by looking at the autocorrelation of the residuals. Once you
build an ARMA or ARIMA model in JMP, it will by default provide residuals information along with model
summary and parameter estimates.

Exhibit 11 ACF and PACF Plots of Residuals

4 Residuals
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2016 2017 2018 2019 2020 2021
Date
Lag AutoCorr -.8-6-4-20 .2 4.6.8 Ljung-BoxQ p-Value Lag Partial -.8-6-4-20 .2 4.6.8
0 10000 i i} . . 0 10000
1 -0.0000 0.0000 0.9999 1 -0.0000
2 0.0023 0.0065 0.9968 2 00023
3 0.0180 04129 09376 3 00180
4 -0.0166 0.7574 09441 4 -0.0166
5 0.0081 0.8401 09744 5 0.0081
6  -0.0059 0.8841 09896 6 -0.0062
7 0.0102 1.0153 0.99%46 7 00108
8 0.0224 1.6463  0.9900 8 00219
9 0.0005 1.6466 0.9959 9 0.0009
10 -0.0104 1.7837 09977 10 -0.0112
11 -0.0144 2.0430 09983 11 -0.0147
12 0.0243 2.7830 0.9969 12 0.0249
13 -0.0224 34140 09960 13 -0.0222
14 0.0011 34155 0.9981 14 0.0013
15 -0.0069 34757 0.9990 15 -0.0085
16 0.0008 34766 0.9996 16 0.0021
17 -0.0653 I B 8.8604 09445 17 -0.0666
18 0.0146 i 9.1286 09567 18 0.0166
19 -0.0193 9.5995 0.9621 19 -0.0197
20 -0.0194 10.0756 0.9668 20 -00176
21 -0.0109 102273 09758 21 -00133
22 0.0171 10.5961 0.9800 22 00202
23 0.0103 10.7315 09858 23 00097
24 -0.0191 11.1971 09875 24 -00190
25 0.0239 11.9210 09872 25 00268

Exhibit 11 shows the ACF and PACF of residuals of the ARMA (3,2) model. It can be observed that there
is no autocorrelation in the residuals (as seen in the second column, AutoCorr). Thus, the ARMA (3,2)
model is correctly specified and is able to adequately capture the dynamic features of the data series.
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Summary

Statistical insights

To summarize, in this case, the scheme of analysis using JMP involved the following:

Generating summary statistics of the data series.
Visually representing the data using Graph Builder.
Differencing the data.

Testing stationarity using ADF Test.

Generating ACF and PACF plots.

Estimating ARMA/ARIMA models.

Creating model comparisons based on AlIC.
Conducting parameter estimations of ARMA model.
Using residuals for diagnostic testing.

Implications

Hari can draw the following conclusions from the analysis:

e The gold prices in the United States are non-stationary in nature and exhibited an upward trend
during the five-year period.

e The gold price series turned stationary on first differencing.

¢ An ARMA (3,2) model captures the behavior of gold prices in the United States; the same can be
used for forecasting gold prices.

JMP features and hints

This study used the Distribution platform to display histograms and summary statistics; it also used Graph
Builder to visualize the data in a time series manner. Time series analysis, which is under Specialized
Modeling Platform, was used conduct an augmented Dickey-Fuller test for stationarity.

Transformations are applied to create new columns, followed by checking for the stationarity of the data
series. ARMA and ARIMA models were built by specifying the parameters. A Model Comparison report
was used to select the model.

Exercise

The price of silver for a five-year period (2016-2020) is available in SP.jmp. Perform the scheme of
analysis explained in this study. Identify the best ARMA model for silver price and perform diagnostic
checking.
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