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Background

The objective of this study is to develop a model to predict the median value of homes in the Boston area.
The data were originally collected and assembled in the mid-1970s (Harrison and Rubinfield, 1978), so
this example is a bit dated. However, it is typical of a socioeconomic data set that is used to inform
economic or public policy decisions, and the data set is well-known throughout the data mining
community.

The Task

Our goal is to use the available data build a model that makes accurate predictions about home values in

the Boston area. To ensure that the model predicts well for data not used to build the model, we use

model validation. We will build different models (e.g., multiple regression, regression tree and neural

network) in JMP Pro, compare the performance of these models, and select the best-performing model.
The Data Boston Housing BBM.jmp

Each row in the data table is taken from a census tract (or town) in the Boston area. The response of

interest is the continuous variable mvalue, which is the median home value (in $1,000) for towns in the

Boston area in the 1970s.

Potential predictor variables in the data set are:

crim Per capita crime rate for the census tract

zn Proportion of a town’s residential area zoned for lots larger than 25,000 square feet

indus Proportion of non-retail business acres per town

chas This is a 0/1 indicator variable. If the town bounds on the Charles River, the value is 0;
otherwise the value is 1

Nox Average annual nitrogen oxide concentrations in parts per hundred million

Rooms Average number of rooms in owner-occupied units

Age Proportion of owner units built prior to 1940

Distance Weighted distances to five employment centers in the Boston region

Radial Index of accessibility to radial highways

Tax Full value property tax rate (per $10,000)

Pt Pupil-to-teacher ratio by town school district

Lstat Proportion of population that is “lower status,” that is, proportion of adults without

some high school education or that are classified as laborers



Analysis

The focus of this case study is model validation, comparison and selection. As such we omit perhaps the
most important and time-consuming steps in the analytics process, data exploration and preparation®. A

variety of graphical and statistical tools are used to identify potential gaps, explore potential data quality

issues, and develop an in-depth understanding of the data and available variables.

We recommend the following approach to examining and understanding your data prior to modeling:
. Explore data one variable at a time, using Cols > Cols Viewer, Analyze > Distribution, and Graph > Graph Builder.
e  Explore data two variables at a time, using Graph Builder, Analyze > Tabulate and Fit Y by X.
. Explore data three or more variables at a time using the same tools, plus Rows > Data Filter, the Local Data Filter (from
the toolbar), Graph > Scatterplot Matrix, Cols > Column Switcher, and other graphical tools.

This initial data exploration provides insights into the available data, along with the steps needed to
prepare the data for modeling. For example, you may need to address missing values, transform or
derive new variables, or collect new data.

Note that we will also omit many of the background details for the different modeling approaches used.
For additional information on multiple regression, regression trees and neural networks, refer to Building
Better Models With IMP Pro or JMP Help (under the Help menu).

What Is Model Validation?

When we build a predictive model, there is a risk that we will model noise in the particular data set, rather
than modeling the true relationship between predictors and the response. The resulting model may be
overly complicated (overfit), or may not perform well when applied to new data. Overfitting can occur
when a model is so complex that it attributes random noise in the response data to factors being used to
make predictions. Validation helps us guard against this.

Here’s the basic idea. When we use model validation, we withhold a subset of our data from the modeling
process. The portion of data used to build the model is often referred to as the training set, and the data
withheld is often referred to as the validation set (or the holdout set). We build the model using training
data, and then apply the model to validation data to determine how well it performs. A third portion of the
data, a test set, is also recommended. This subset is withheld from the modeling process, and is used to
evaluate the final model.

There are different methods for validation available in the JMP modeling platforms: Random holdback, k-
fold cross-validation, excluded rows, and using a validation column (the latter method is only available in
JMP Pro). In this case study, we focus on using a validation column. With this approach, we divide the
data set into a training, validation and (optionally) a test subset. In JMP Pro, this is done by creating an
indicator column in the data table to specify the validation role for each row in the data table.

A validation column, Validation1, has been added to the Boston Housing data table (see the last column
in the data table shown in Exhibit 1). The first and fourth rows in the data table will be assigned to the
validation set; the second, third and fifth rows will be assigned to the training set; the sixth row will be
assigned to the test set, and so on.

! For additional information on data exploration and preparing data for modeling, see Building Better Models, Chapter 3 — Working with Data.



Exhibit 1 A partial view of the data table, with a validation column (Validation1)

crim zn indus chas nox rooms age distance radial tax pt Istat mvalue Validation1

1 0.00632 18 231 0 0538 6575 652 4.09 1 296 153 4.98 24 Validation
2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 178 9.14 21.6 Training
3 0.02729 0 7.07 0 0469 7.185 61.1 4.9671 2 242 178 4.03 34.7 Training
4 0.03237 0 218 0 0458 6.998 458 6.0622 3 222 187 294 33.4 Validation
5 0.06905 0 218 0 0458 7.147 542 6.0622 3 222 187 533 36.2 Training
6 0.02985 0 218 0 0458 6.43 58.7 6.0622 3 222 187 521 28.7 Test

7 0.08829 125 7.87 0 0524 6.012 666 5.5605 5 311 152 1243 22.9 Training
8 0.14455 125 7.87 0 0524 6.172 96.1 5.9505 5 311 152 19.15 27.1 Training
9 0.21124 125 7.87 0 0524 5631 100 6.0821 5 311 152 29.93 16.5 Validation
10 0.17004 125 7.87 0 0.524 6.004 85.9 6.5921 5 311 152 1741 18.9 Validation
11 0.22489 125 7.87 0 0524 6377 943 6.3467 5 311 152 2045 15 Training
12 0.11747 125 7.87 0 0524 6.009 829 6.2267 5 311 152 13.27 18.9 Training
13 0.09378 125 7.87 0 0524 5.889 39 5.4509 5 311 152 1571 21,7 Validation
14 0.62976 0 8.14 0 0.538 5949 618 4.7075 4 307 21 8.26 20.4 Training
15 0.63796 0 814 0 0538 6.096 845 4.4619 4 307 21 10.26 18.2 Training

Rows in the training set will be used to build the model, rows in the validation set will be used to
determine how complex the model needs to be, and rows in the test set will be used to assess how well
the model will perform when applied to new data.

Note that the specific way in which the validation set is used may differ between modeling platforms2. For
example:

e Inforward stepwise regression, validation is used to decide when to stop adding additional terms
into the model,

e In decision trees, validation is used to decide when to stop splitting the data, and

¢ In neural networks, validation is used to determine the best value for the penalty parameter used
to prevent overfitting of the neural network.

Creating Training, Validation and Test Subsets

One way to create a validation column in JMP Pro is to use the Make Validation Column utility (under
Cols > Model Utilities). In the Make Validation Column dialog in Exhibit 2, we request a 50 percent
training, 25 percent validation, and 25 percent test split. In this example, we use the Purely Random
method to create the holdback sets. The name of the validation column that we create is Validation2.

Note: The Stratified Random option will perform a random selection with balance across variables that
are currently selected in the data table. For instance, if we want each validation subset to contain the
same relative proportions of chas = 0 and chas = 1, we could use chas as the stratification variable (that
is, we would select the variable chas prior to launching the Make Validation Column utility).

2 For more details on how validation is applied in the specific JMP Pro modeling platforms, see Building Better Models, Chapter 8 —
Using Cross Validation, or refer to Fitting Linear Models or Specialized Models under Help > Books.



Exhibit 2 Using the Make Validation Column Utility

v ~ Make Validation Column

A validation column divides the rows of the data table into a fraining set to estimate the
model; a validation set to help choose a model that predicts well; and sometimes a test
set to check prediction after the model is chosen.

Specify how to allocate rows to Training, Validation and Test sets.
Enter either rates or counts.

Total Rows 506

Training Set g§

Validation Set [ 0.25

Test Set §g§
New Column Name [Valdationz |

Choose a method to create the holdback sets:

Purely Random creating a formula column with a random function

Stratified Random  balanced across the selected columns

Cancel Help

A new column, Validation2, is added to the data table (this column was previously created; we will use
this column throughout this case study).

Note that the actual values stored are the numbers 0, 1 and 2, but the utility creates a Value Labels
column property to display descriptive labels Training, Validation and Test in place of numeric values in
the data table and output reports (to view the column properties, right click on the column name in the
data table and select Column Info).

Exhibit 3 The Value Labels column property for the validation column

Column Properties ¥

Value Labels R
If a column has value labels, and Use Value Labels is
checked, the labels are displayed wherever the column
data are displayed.
0 = Training Add
1 = Validation
Remove 2 =Test Change
Remove

Allow Ranges
Value |

Label | ‘
Use Value Labels

Using Cross-Validation to Build a Linear Regression Model

We now use the validation column (Validation2) in developing a model to predict the median home value
for Boston Housing data. Since we have several potential predictors, the first modeling method that we

use is stepwise regression?®.

We specify the model as shown in Exhibit 4, using the Fit Model dialog (from the Analyze menu). We
enter mvalue as the Y variable. In this case, we specify a more complicated model than we will likely
need. We enter all predictor variables as main (linear) effects, and then enter all of their two-factor
interactions. To do this, we select predictors from the Select Columns list and Factorial to Degree from

3 For more information on stepwise regression, see Building Better Models With JMP Pro, Chapter 4 — Multiple Linear Regression.



the Macros menu. The default “degree” that the model specification macro uses is “2”. This adds the 12
factors (or main effects) plus 66 two-way (second-order) interaction terms to the list of model effects.

Finally, we specify the Validation2 column for the Validation role, and select Stepwise from the list of
modeling “Personalities.”

Exhibit 4 Specifying a Stepwise Model with Interactions and Validation

v ~/Model Specification

Select Columns Pick Role Variables | Personality: Stepwise u
~ 18 Columns Y | A mvalue I
Acrim
Azn Help Run
Aindus B
tchas Weight ‘ Recall Keep dialog open
nox
Frei
::’g‘;"ﬂs a ‘ Remove
Adistance Validation || Validation2 \I
Adradial
Atax By ‘
Apt
Aistat
Amvalue Construct Model Effects
ik Validation1
k. Validation2 Add
Cross
Nest
.
Full Factorial
Factorial to dagree Add selected columns and interactions up to
h " L the specified degree. E.g., degree 2 enters
. Factorial sorted main effects and two-way interactions.

Response Surface
Mixture Response Surface
Polynomial to Degree
Scheffe Cubic

Radial

Choosing the Regression Model Terms With Stepwise Regression

We click Run, which opens the stepwise regression dialog (Exhibit 5).

Since we are using validation, the stopping rule that determines which model is selected is Max Validation
RSquare. When we click Go, the forward stepwise regression modeling process begins. Terms are added
to the model one at a time. Each term that is added to the model term (from the remaining terms) is the
one that has the lowest p-value.

This process continues until there is no improvement in the RSquare Validation value. JIMP will then
continue to add terms (up to ten) in search of a higher value. The final model is the one resulting in the
highest RSquare Validation



Exhibit 5 Boston Housing Stepwise Initial Dialog

v = Stepwise Fit for mvalue
v Stepwise Regression Control

Stopping Rule:  Max Validation RSquare [ bl Enter All Make Model
Direction: Forward 4 Remove All Run Model
Rules: Combine [T}

Go Stop Step

240 rows not used due to excluded rows or missing values.

RSquare RMSE

SSE DFE RMSE RSquare RSquare Adj Cp p AlCc BIC Validation Validation RSquareTest RMSE Test
24121.72 265 9.540721 0.0000 0.0000 2739.1027 1 1857.882 1965.003 -0.006 9.353927 -0.008 8.13755
v Current Estimates
Lock Entered Parameter Estimate nDF SS "F Ratic" "Prob>F"
Intercept 225545113 1 0 0.000 1
crim 0 1 3067.897 38.469 2.14e-9
zn 0 1 2740.689 33840 1.73e-8
indus 0 1 4589.527 62.200 8.2e-14
chas{0-1} 0 1 1426.835 16.598 6.12e-5
nox 0 1 4284.006 57.011 7.1e-13
rooms 0 1 11154.16 227.082 1.9e-37
age 0 1 3445.688 43.996 1.9e-10
distance 0 1 1278.368 14774  0.00015
radial 0 1 3208.573 40.504 8.6e-10
tax 0 1 4757.081 64.854 2.8e-14
pt 0 1 679777 103.581 9.7e-21
Istat 0 1 1342544 331.360 1.6e-48
(crim-3.61352)*(zn-11.3636) 0 3 5027.286 22.994 3e-13
(crim-3.61352)*(indus-11.13868) 0 3 6390.597 31.476 2.1e-17
(crim-3.61352)"chas{0-1} 0 3 4840.073 21922 1.1e-12
(crim-3.61352)*(nox-0.5547) 0 3 5172.925 23.842 1.1e-13
(crim-3.61352)*(rooms-6.28463) 0 3 15163.64 147.832 4.5¢-56

Exhibit 6 shows the history of terms added to the model. For each step we see a humber of statistics,
including the RSquare Validation.

In Step 18, JMP reports that the best RSquare Validation, across all steps, is 0.8002. This corresponds to
the RSquare Validation at Step 7. So, the model selected is the model produced at Step 7.

Exhibit 6 Boston Housing Stepwise Regression Step History

v Step History

RSquare
Step Parameter Action "Sig Prob" SeqSS RSquare Cp p AlCc BIC Validation
(rooms-6.28463)"(Istat-12.6531)  Entered 0.0000 18257.84 0.7569 472.04 4 1587.86 1605.55 0.6742
2 (rooms-6.28463)*(pt-18.4555) Entered 0.0000 861.4629 0.7926 368.79 6 1549.8 1574.45 0.6848
3 (distance-3.79504)*(Istat-12.6531) Entered 0.0000 602.6045 0.8176 297.77 8 1519.93 1551.47 0.7109
4 (nox-0.5547)"(rooms-6.28463) Entered 0.0000 341.0061 0.8317 259.31 10 1502.8 1541.18 0.7403
5 (crim-3.61352)"chas{0-1} Entered 0.0000 521.2242 (0.8533 200.42 13 1472.88 1521.37 0.7840
6 chas{0-1}*(tax-408.237) Entered 0.0002 227.8395 (0.8628 176.06 15 1459.68 1514.83 0.7718
7 (radial-9.54941)%(stat-12.6531)  Entered 0.0002 220.0105 0.8719 152.66 17 144597 1507.7 0.8002
8 (rooms-6.28463)%(radial-9.54941) Entered 0.0000 203.4196 0.8803 129.34 18 1430.17 1495.17 0.7839
9 (age-68.5749)"(distance-3.79504) Entered 0.0003 184.9772 0.8880 110.31 20 1417.25 1488.72 0.7979
10  (crim-3.61352)*(pt-18.4555) Entered 0.0029 96.17724 0.8920 100.34 21 1409.99 1484.66 0.7769
11 (crim-3.61352)*(Istat-12.6531) Entered 0.0013 108.0885 0.8965 88.879 22 1401.11 1478.97 0.7698
12 (age-68.5749)'(radial-9.54941) Entered 0.0002 138.8827 0.9022 73.589 23 1388.31 1469.33 0.7635
13 (nox-0.5547)*(age-68.5749) Entered 0.0002 129.0342 0.9076 59.524 24 1375.78 1459.95 0.7590
14 chas{0-1}*(rooms-6.28463) Entered 0.0017 89.20242 0.9113 50.419 25 1367.37 1454.67 0.7500
15 (crim-3.61352)*(nox-0.5547) Entered 0.0117 56.08521 0.9136 45436 26 1362.78 1453.19 0.7513
16  (crim-3.61352)*(rooms-6.28463) Entered 0.0038 72.10261 0.9166 38.46 27 1355.92 14494 0.7746
17  (rooms-6.28463)*(age-68.5749)  Entered 0.0163 48.25812 0.9186 34.452 28 1351.98 1448.53 0.7554
18 Best Specific . . 08719 15266 17 144597 1507.7 0.8002 ©

To get a better feel for how stepwise builds the model, we save the step history to a data table and use
the Graph Builder to create a graph of step versus RSquare Validation (see Exhibit 7).

The model that was found after seven steps has a Validation RSquare of 0.8002. After 10 additional
forward steps, the Validation RSquare does not get any larger. As such, the model that was found at Step
7 is chosen as the best model.



Exhibit 7 Graph of Stepwise Step History

v = Graph Builder
RSquare Validation vs. Step
Row: 7
Step: 7
RSquare Validation: 0.8002

0.80

0.75

RSquare Validation

0.70

Step

(To save a table of IMP output to a data table, right-click on the table and select Save to Data Table. To create the graph, drag Step
to the X zone, drag RSquare Validation to the Y zone, and then click on the line icon above the graph.)

To create the chosen model, we select Make Model in the Stepwise Fit window. This opens the Fit Model
dialog with the chosen model specified. We then click Run to fit the model.

The fitted model results for our example are shown in Exhibit 8. As expected, the RSquare for the
validation set is 0.8002 (see the bottom panel in Exhibit 8).

Exhibit 8 Fitted Model from Stepwise Regression

v ~'Response mvalue
» Effect Summary
» Actual by Predicted Plot
v Summary of Fit

RSquare 0.871911
RSquare Adj 0.86368
Root Mean Square Error 3.522577
Mean of Response 22.55451
Observations (or Sum Wgts) 266

» Analysis of Variance
v Parameter Estimates

Term Estimate Std Error tRatio Prob>|t|
Intercept 44.621362 5.756732 7.75
crim 3.570038 0.716813 4.98
chas[0] -7.558841 1.263498 -5.98
nox -13.42288 4.244065 -3.16
rooms 3.2955199 0.450062 7.32
distance -0.868399 0.193128 -4.50
radial 0.2779489 0.071045 3.91
tax -0.049922 0.009974 -5.01
pt -0.690317 0.132594 -5.21
Istat -0.637494 0.058856 -10.83
(crim-3.61352)*chas|0] -3.69331 0.715882 -5.16
chas|[0]*(tax-408.237) 0.0390813 0.009534 410
(nox-0.5547)*(rooms-6.28463) -11.5764 4.234603 -2.73
(rooms-6.28463)*(pt-18.4555) -0.881481 0.161285 -5.47
(rooms-6.28463)*(Istat-12.6531) -0.33509 0.049402 -6.78

(distance-3.79504)*(Istat-12.6531) 0.0405233 0.023826 1.70 0.0902
(radial-9.54941)*(Istat-12.6531) -0.014773 0.004937 -2.99

» Effect Tests

v Crossvalidation
Source RSquare RASE Freq
Training Set 0.8719 3.4082 266
Validation Set 0.8002 4.1688 127
Test Set 0.7195 4.2928 113



Saving the Prediction Formula

We save the model results (use the red triangle and then select Save Columns > Prediction Formula).
This creates a new column Pred Formula mvalue. This saved column contains the formula that calculates
the predicted value for each row in the data table, and we can use this formula to predict new values. As
we will see, we can also use a saved prediction formula to compare the performance of this model to
others that we have created.

Using Validation to Build a Decision Tree Model

Even though the process described above helped us to choose the “best” linear regression model, the
final chosen model is just one of many options available for building prediction models. Decision trees can
sometimes have better predictive properties than regression models, so we fit a simple decision tree
model to predict mvalue. We use validation to guide the decision tree-building process.

In this situation, splits in the decision tree are determined by the LogWorth statistic*. Here, we again use
Validation2 to specify the training, validation and test subsets. After each split of the decision tree, the
validation RSquare is calculated. When the validation RSquare stops improving, the decision tree will
continue to split in order to determine whether any improvement can be attained. It automatically stops
splitting if there is no improvement after 10 additional splits.

Exhibit 9 shows the Partition platform launch dialog. We specify mvalue as the response and all of the
potential predictors as factors. Validation2 is chosen as the validation role column. (Partition is an option
under Analyze > Modeling). We use the default settings and click OK to launch the analysis.

Exhibit 9 Boston Housing Partition Dialog with Validation2

Recursive partitioning

Select Columns Cast Selected Columns into Roles Action

R EICOl Y, Response = | .4 mvalue OK
Acrim
Azn " Cancel
dindus X, Factor A crim
lichas A=
Anox A indus
Arooms il chas Remove
Aage A nox
Adistance i rooms Recall
Aradial A age
dtax A distance Hel
Apt A radial elp
Aistat tax
Amvalue Apt
ik Validation1 o 'stat

il Validation2
Weight

Method Decision Tree [T Freq
Validation Portion 0| Validation || Validation2 |
Informative Missing

Ordinal Restricts Order By ;

The initial model fit report is shown in Exhibit 10. Since we are using model validation, JMP reports
Training, Validation and Test RSquare, along with other statistics.

We click Go to begin the automatic decision tree-building process.

4 See Building Better Models With JMP Pro, Chapter 6 - Decision Trees, or the JMP Help for details.



Exhibit 10 Boston Housing Initial Partition Output With Cross-Validation

Split Prune Go Number
RSquare RMSE N of Splits AlCc
Training 0.000 266 0 0
Validation 127
Test 113
|
~ All Rows
Count 266
Mean 22.554511
Std Dev  9.540721
» Candidates

In Exhibit 11, we see statistics for the final model and the Split History graph. The bottom line in the Split
History graph corresponds to the validation RSquare, the middle is the test RSquare, and the top line is
the training RSquare. The largest tree that was built had 29 splits. However, JMP stops adding branches
to the tree after 10 splits if there is no further improvement in validation RSquare.

The chosen decision tree model or the tree with the best validation RSquare (0.670) has only 19 splits.
Recall that validation RSquare for the stepwise model was 0.8002. Based on this statistic alone, the
stepwise model outperforms the regression tree.

Exhibit 11 Fitted Decision Tree Model With Cross-Validation

Split Prune Go Number
RSquare RMSE N of Splits AlCc
Training 0.886 3.2167794 266 19 142224
Validation 0.670 5.359412 127
Test 0.730 4.2102333 113
v Split History
1.00
0.75 .
o _,/ T — e .
5] / 5
Z 050 | "
o« /]
0.25

0.00

0 15 20 30 35

Number of Splits

5 10 25

Validation Data in Red
Test Data in Orange

We use the chosen decision tree model and save the prediction formula to the data table (use the top red
triangle, Save Columns > Save Prediction Formula). This creates a new column, mvalue Predictor.

Fitting a Neural Network Model Using Validation

A third model is developed using the Neural platform (Neural is an option under Analyze > Modeling).

Neural networks are highly flexible, and can be used to model either categorical or continuous responses.
Due to their flexibility, neural network models can often outperform other modeling methods; however,
they are also prone to overfitting. As such, some form of validation is required when building neural
network models in JMPS.

We fit a neural network, again using the Validation2 as the validation column (Exhibit 12).

5 For more information on fitting neural networks, see Building Better Models With JMP Pro, Chapter 7 — Neural Networks, or refer to
the JMP Help.



Exhibit 12 Boston Housing Neural Model Launch Dialog With Cross-Validation

Select Columns Cast Selected Columns into Roles Action

~ 18 Columns Y, Response | .4 mvalue OK
Acrim
Agn X, Factor A crim Cancel
Aindus Az
gl chas A indus
Anox il chas
Arooms 4 nox Remove
Aage A rooms
Adistance dage Recall
Aradial A distance
Atax A radial Help
Apt A tax
Aistat Apt
Amvalue A Istat
ik Validation1
il Validation2 Freg ‘ ‘

Missing Value Coding Validation | Validation2 |

By

The default model has one hidden layer and three “sigmoid” TanH nodes (see Exhibit 13). We use the
default settings, and click Go to fit the neural model.

Exhibit 13 Boston Housing Neural Model Launch

v ~/Neural
Validation Column: Validation2

v Model Launch

Hidden Layer Structure

Number of nodes of each activation type
Activation Sigmoid Identity Radial

Layer TanH Linear Gaussian
First 3 0 0
Second 0 0 0
Second layer is closer to X's in two layer models.

Boosting

Fit an additive sequence of models scaled by the learning
rate.

Number of Models 0
Learning Rate 0.1

Fitting Options

Transform Covariates

Robust Fit
Penalty Method  gquared ]
NumberofTours| 1]
Go

The results for the fitted model are shown in Exhibit 14.5 The RSquare for the validation set is 0.8151; the
highest validation RSquare of the three models we’ve created.

5 To obtain the same result for the neural model in this example, set the random seed to 1000 prior to launching the neural platform
using the Random Seed Reset add-in, which can be installed from /community.jmp.com/docs/DOC-6601. Note that Windows and
Mac may produce different results with the same random seed.



file:///C:/community.jmp.com/docs/DOC-6601

To view the model, we select Diagram from the red triangle for the model. The diagram shows the
structure of a neural network model. Our model has an input layer with input variables (predictors), a
hidden layer with three nodes, and an output layer. In each node in the hidden layer, a linear combination
of input variables is transformed using the TanH function (which is similar to the logistic function). The
output layer, which is used to predict the response (mvalue), is a linear combination of the outputs from
the hidden layer.

Exhibit 14 Boston Housing Neural Fitted Model with Cross-Validation

v ~/Neural
Validation Column: Validation2

» Model Launch
v ~ Model NTanH(3)

v Training v Validation v Test
v mvalue v mvalue v mvalue

Measures Value Measures Value Measures Value
RSquare 0.8951951 RSquare 0.8151387 RSquare 0.8294569
RMSE 3.0828625 RMSE 4.009683 RMSE 3.3474768
Mean Abs Dev 2.1596555 Mean Abs Dev 2.7985532 Mean Abs Dev 2.6001761
-LogLikelihood 676.91602 -LogLikelihood 356.57164 -LogLikelihood 296.86743
SSE 2528.075 SSE 2041.8498 SSE 1266.2329
Sum Freq 266 Sum Freq 127 Sum Freq 113
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As with the two previous models (i.e., stepwise regression and regression tree), we save the prediction
formula to the data table (from the fitted model’s red triangle, choose Save Columns > Save Profile
Formulas). The new column is named Predicted mvalue.

(Note: To view the hidden layer and output layer formulas as described above, select Save Formulas
instead of Save Profiler Formulas. Formulas for the hidden layers are saved as H1 1, H1 2, and H1_3.
The formula for the output layer, which is a linear combination of the hidden layers, is saved as Predicted
mvalue. Right-click on the column names in the data table and select Formula to view the formulas.)

Model Comparison

We have fit three different models using the same validation column, and have saved prediction formulas
for the three models to the data table. In JMP Pro, we use the Model Comparison platform to compare the
performance of these models (select Analyze > Modeling > Model Comparison).

We specify the columns with prediction formulas for each model as Y, Predictors and select Validation2
as the Group variable. Note that an alternative is to leave the Y, Predictors field blank and use Validation2
as the By variable. With this setup, JMP will find columns with saved prediction formulas for you.



Exhibit 15 Model Comparison Dialog

Comparing predictors to see which performs better.
Select Columns Cast Selected Columns into Roles Action

~ 18 Columns Y, Predictors | .4 Pred Formula mvalue OK
dlchas _4 mvalue Predictor
Anox 4 Predicted mvalue Cancel

Aage

Agigstancs Group Validation2

Aradial ST,

Atax

:pt Recall
Istat .

Amvalue Weight

dl, Validation1

il Validation2 Freq

_APred Formula mvalue

_dmvalue Predictor By

APredicted mvalue

Help

If you choose no Predictor columns, it will find and
analyze all predictors.

In the resulting Model Comparison report (Exhibit 16), we use statistics from the test set for model
comparison. Recall that the test set was not used in building our models. Since this set was completely
withheld from all modeling efforts, it provides an “honest” assessment of model performance.

In addition to RSquare, the following statistics are provided:

¢ RASE (Root Average Squared Error) — this is similar to RMSE (Root Mean Square Error), but is
not based on the degrees of freedom for the model. This makes it better than RMSE when
comparing different types of models. For this measure, lower is better.

o AAE (Average Absolute Error) — a measure of the average prediction error. Lower is better.

The neural network model has the highest RSquare value (0.8295). It also has the lowest RASE.
However, the AAE is slightly higher than the AAE for the Least Squares model.

Exhibit 16 Model Comparison Report

v ~ Model Comparison

» Predictors

v Measures of Fit for mvalue
Validation2 Predictor Creator .2.4.6.8 RSquare RASE AAE Freq
Training Pred Formula mvalue Fit Least Squares| = 0.8719 3.4082 2.4207 266
Training mvalue Predictor Partition ) 0.8859 3.2168 2.1457 266
Training Predicted mvalue Neural 0.8952 3.0829 2.1597 266
Validation  Pred Formula mvalue Fit Least Squares 0.8002 4.1688 2.8230 127
Validation mvalue Predictor Partition . 0.6697 5.3594 3.3003 127
Validation _ Predicted mvalue Neural 0.8151 4.0097 2.7986 127
Test Pred Formula mvalue Fit Least Squares i 0.7195 4.2928 2.5259 113
Test mvalue Predictor Partition 0.7302 4.2102 3.2313 113
Test Predicted mvalue Neural 0.8295 3.3475 2.6002 113

If we have to choose only one of these models from the perspective of performance and prediction error,
we would select the neural network model.

Additional options for comparing models, such as the Profiler, are available from the top red triangle in the
model comparison window.



Summary
Statistical Insights

The use of validation (or cross-validation) is central to our ability to develop predictive models that neither
overfit nor underfit our data. As such, it is one of the most important concepts in predictive modeling. In
many situations, we use two holdout subsets: training and validation. If we also withhold a test subset,
then we have the ability to assess model performance on an unbiased sample that has not been used in
the model building or model selection processes. This allows for good model evaluation, and makes it
easy to compare and choose among competing models.

Implications

With the exception of the stepwise regression model—which included two-way interactions—we created
relatively simple models using the default settings. To create a regression tree, we used the decision tree
option, however the other tree methods (i.e., bootstrap forest and boosted tree) may lead to better
performing models. We also created a simple neural network model using the default single hidden layer.
Adding additional nodes with different activation functions, using two layers, and using options such as
boosting may lead to models with improved predictive performance (at the cost of complexity).

In this case study we built predictive models for a continuous response. For classification models— which
have categorical responses—the approach to model validation, comparison and selection is analogous.
However, other statistics, such as the misclassification rate, are reported instead of RASE and AAE.
Other options, such as the ROC Curve, Lift Curve, and Confusion Matrix are available from the top red
triangle in the modeling platforms and in the Model Comparison platform.

JMP Features and Hints

We used the Make Validation Column utility to create a validation column, building three predictive
models: a stepwise regression model using Fit Model, a regression tree (using Partition), and a neural
network (using Neural). We saved prediction formulas for these models to the data table, and then used
the Model Comparison platform to compare the performance of the three models on the test set.

Exercises

Exercise 1: Open the example data set Boston Housing BBM.jmp.

a. Use the Make Validation Column utility to create random training, validation and test subsets. Use
50 percent of the data for training, 25 percent for validation and 25 percent for the test.

b. Repeat Part A, but first select the column chas in the data table, and then create a stratified
random sample.

c. When creating a validation column, it is important that the distributions of the variables across
training, validation and test sets are similar.

i. Explain why this is important.

ii. For the validation column produced in part b, use built-in tools such as Distribution,
Tabulate, and Graph Builder to explore the makeup of training, validation and test sets
with respect to the response variable and predictor variables.

Note: If doing this as part of a class exercise, to produce the same validation set as others, set the
random seed to 1,000 before creating the validation column using the add-in described in Footnote
6.



Exercise 2: Use Boston Housing BBM.jmp for this exercise.

a. Create final prediction models with the validation column that you created in Exercise 1b, using the
following modeling methods:

1. Forward stepwise regression
2. Decision tree
3. Neural network

b. Compare the final models using the Model Comparison platform.

Using the default statistics provided, is there one model that stands out as being better?
What criteria did you use to determine the best-performing model?

Describe the criteria that you used in Part 2.

Explore the options available under the red triangle. Explain how the Profiler and first two
plots can be useful in comparing and selecting the best performing model.

5. Explain the value of using a test set. Why is it important to use a holdout sample for
model evaluation and selection?
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Exercise 3: Use the Credit Card Marketing BBM.jmp data for this exercise. This data set is described in
the classification tree case study, and in Example 1 in Chapter 6 of Building Better Models with JMP Pro.
The response is Offer Accepted.

a. Create a distribution of Offer Accepted. The target category is Yes. What percent of offers
were accepted?

b. Use the Make Validation Column modeling utility to create training, validation and test sets,
stratified on Offer Accepted. Again, if doing this as part of a class exercise, set the random
seed to 1,000 prior to creating the validation column.

c. Explore this validation column as you did in Exercise 1c. What percent of each set is Offer
Accepted = Yes and Offer Accepted = No? Are there any issues with using this validation
column?

d. Create a decision tree and neural model to predict Offer Accepted using this validation
column. Then compare these models using the Model Comparison platform.

Which is your best-performing model? What is the misclassification rate?
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