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Background 

A bank wants to understand how customer banking habits contribute to revenues and profitability. The 
bank has customer age and bank account information, e.g., whether the customer has a savings account, 
whether the customer has received bank loans, and other indicators of account activity. 

The Situation 

We want to build a model that allows the bank to predict profitability for a given customer. A surrogate for 
customer profitability available in our data set is the Total Revenue a customer generates through their 
accounts and transactions. The resulting model will be used to forecast bank revenues and guide the 
bank in future marketing campaigns.  
 

The Data BankRevenue.jmp  

The data set contains information on 7,420 bank customers: 

Rev_Total Total revenue generated by the customer over a 6-month period. 
Bal_Tota  Total of all account balances, across all accounts held by the customer. 
Offer An indicator of whether the customer has received a special promotional offer in 

the previous one-month period. Offer=1 if the offer was received, Offer=0 if it was 
not. 

AGE  The customer’s age. 
CHQ Indicator of debit card account activity. CHQ=0 is low (or zero) account activity, 

CHQ=1 is greater account activity. 
CARD Indicator of credit card account activity. CARD=0 is low or zero account activity, 

CARD=1 is greater account activity. 
SAV1 Indicator of primary savings account activity. SAV1=0 is low or zero account 

activity, SAV1=1 is greater activity. 
LOAN Indicator of personal loan account activity. LOAN=0 is low or zero account activity, 

LOAN=1 is greater activity. 
MORT Indicator of mortgage account tier. MORT=0 is lower tier and less important to the 

bank’s portfolio. MORT=1 is higher tier and indicates the account is more important 
to the bank’s portfolio. 

INSUR Indicator of insurance account activity. INSUR=0 is low or zero account activity, 
INSUR=1 is greater activity. 

PENS Indicator or retirement savings (pension) account tier. PENS=0 is lower balance 
and less important to bank’s portfolio. PENS=1 is higher tier and of more 
importance to the bank’s portfolio.  

Check Indicator of checking account activity. Check=0 is low or zero account activity, 
Check=1 is greater activity. 

CD Indicator of certificate of deposit account tier. CD=0 is lower tier and of less 
importance to the bank’s portfolio. CD=1 is higher tier and of more importance to 
the bank’s portfolio.  

MM Indicator of money market account activity. MM=0 is low or zero account activity, 
MM=1 is greater activity. 

Savings Indicator of savings accounts (other than primary) activity. Savings=0 is low or zero 
account activity, Savings=1 is greater activity. 

AccountAge Number of years as a customer of the bank. 



 

Prepare for Modeling 

We begin by looking at the variable of interest, total revenue (Rev_Total) using Graph > Graph Builder 
(drag Rev_Total to the X zone, then click on the histogram icon above the graph frame). Rev_Total is 
highly skewed—a result that  is fairly typical of financial data (Exhibit 1).  

(Note: To explore the underlying shape of the distribution, select the Grabber (hand) tool from your toolbar, click on the graph (and 
hold) and drag the hand up and down. This changes the binning of values in the histogram and allows you to better see the details 
of the distribution) 

 Exhibit 1 Distribution of Total Revenue 

 

In regression situations, highly skewed data can result in a poorly fitting model. A transformation that can 
often be used to normalize highly skewed data, when all of the values are positive, is a log (natural 
logarithm) transformation (see Ramsey and Shafer, 2002, page 68).  

We apply a log transformation to the Rev_Total variable directly in the Graph Builder and reexamine the 
distribution (Exhibit 2). To apply this transformation, right-click on the variable in the variable selection list 
and select Transform > Log. Then, to save the transformation to the data table, right-click on 
Log(Rev_Total) and select Add to Data Table.   

This transformation gives us a much less skewed and more symmetric distribution; as such, we use 
Log(Rev_Total) for the rest of our analysis.  

A similar examination of the total account balance (Bal_Total), which also has a skewed distribution, 
leads to the use of Log(Bal_Total) in our analyses. 

 Exhibit 2 Transformed Total Revenue Using Log Transformation 

 



 

The relationship between the log total revenue and log total account balance is shown in the scatterplot in 
Exhibit 3 (using Graph Builder, drag Log(Rev_Total) to the Y zone and drag Log(Bal_Total) to the X 
zone). The relationship appears to be nearly linear at lower account balances; higher account balances 
generally have higher revenues. This relationship, however, seems to change at higher account 
balances. 

 Exhibit 3  Relationship between Log(Rev_Total) and Log(Bal_Total)  

 

We now examine the other variables. We can see their distributions as well as their relationship to 
Log(Rev_Total). Many of the variables are categorical, with two-levels. Higher revenue values are 
selected in Exhibit 4 (using the Brush tool on the toolbar); we can see this selection across the other 
variables in our data set. Other than total account balance, Log(Bal_Total), there is no variable that 
stands out as being strongly related to revenue. The Arrange In Rows option under the top red triangle in 
the Distribution platform was used to generate Exhibit 4; not all variables are displayed.  

Note that other graphical and analytic tools can be used to understand the data and explore potential 
relationships, such as Fit Y by X and Graph Builder. In addition, the Data Filter (under the Rows menu) 
and Column Switcher (under the top red triangle > Script in any output window) are dynamic tools that 
allow you to dive deeper into your data to explore variables of interest and investigate potential 
relationships. These tools, in addition to the Columns Viewer (under the Cols menu), can also be used to 
identify potential issues with data quality that will need to be addressed prior to modeling. We encourage 
you to explore the data using these tools on your own.  

 Exhibit 4  Relationships between Transformed Variables and Other Variables 

 



 

Note: Within JMP there are a number of preferences that can be set (under File > Preferences or JMP > Preferences on a Mac), 
and all JMP output is customizable with your mouse and keystrokes. Going forward, we periodically resize graphs and change axis 
scaling to better fit content on the page, and change marker sizes or colors to improve interpretability. We also turn off shaded table 
headings in output to provide a cleaner display (within Preferences, Styles > Report Tables).   

Build the Model 
 
We now build a regression model to predict Log(Rev_Total) using Fit Model (see Exhibit 5). The model 
effects are Log(Bal_Total) and the remaining 14 are potential predictor variables (Offer through 
AccountAge).  

 Exhibit 5  Fit Model Dialog 

 

 

There are some immediate signs of trouble when we run this model (Exhibit 6). At the top of the Fit Least 
Squares window, we see some unexpected output, Singularity Details. This means that there are linear 
dependencies between predictor variables. The first row of this table, LOAN[0] = CD[0], indicates that 
JMP cannot identify the difference between these two variables, LOAN and CD. The second line indicates 
that JMP cannot identify the difference between INSUR, MM and Savings. 

The cause of this problem is illustrated in the Distribution output in Exhibit 7. The distributions of these 
three variables are identical. Every time LOAN = 1 (a customer has high loan activity), MM and Savings 
are also 1 (money market and savings activity are also high). Variables within each grouping are 
completely redundant to one another!  

The result of this problem is seen in the parameter estimates table in Exhibit 6. JMP cannot estimate all of 
these coefficients, thus indicating that estimates for LOAN and INSUR are biased, and the estimates for 
CD, MM and Savings are zeroed. JMP can estimate some of the parameters for redundant variables 
(these estimates are biased), but not all (these estimates are zeroed). Whether variables appear as 
biased or zeroed depends entirely on the order in which they were entered into the model, i.e., those 
entered first into the model are displayed as biased.  



 

 Exhibit 6  Fit Least Squares with Singularity 

 

 Exhibit 7 Distributions of INSUR, MM, and Savings 

 

We refit the model without redundant variables. As of JMP 12, this can be done using the Remove button 
at the bottom of the Effect Summary table. We keep LOAN (and eliminate CD) and INSUR (eliminating 
MM and Savings). Note that this was an arbitrary decision: subject matter knowledge should guide the 
decision as to which redundant variables to remove (and which variables to keep in the model).  

As we remove each variable (or term), the Singularity Details table updates, along with all other statistical 
outputs. JMP is now able to estimate coefficients for each of the parameters (Exhibit 8). 



 

 Exhibit 8 Fit Least Squares Parameter Estimates without Singularity, Showing VIFs 

 

A Bit About Multicollinearity 

Before proceeding, we check to make sure that there is no substantial correlation, or multicollinearity, 
between our predictors. When two or more predictors are correlated with one another, it is difficult to 
determine which of the correlated predictors are most important. In addition, model coefficients and 
standard errors may be inflated. A statistical measure of the degree of multicollinearity is VIF, or Variance 
Inflation Factor. As a general rule of thumb, a VIF for a predictor greater than 10 indicates that 
multicollinearity is a problem that should be addressed (Neter, 1996). In some cases, eliminating one of 
the correlated terms from the model can resolve the issue. In severe cases, other techniques may be 
required1. 

To display VIFs, right-click on the Parameter Estimates table and select Columns > VIF. A quick check of 
the VIFs indicates that multicollinearity is not a serious issue; the largest VIF is 9.29 (see the last column 
in Exhibit 8).  

Fitting a Model Using Stepwise Regression 

Since we have 12 remaining potential predictor variables, we use stepwise regression to help with 
variable selection. We return to the Fit Model platform and select Stepwise from the Personality list (to 
return to the Fit Model dialog, click on the top red triangle in the Least Squares output window and select 
Model Dialog).  

We again use Log(Rev_Total) as our Y variable, and use the 12 remaining predictor variables as model 
effects (see Exhibit 9). Click Run to launch the Stepwise platform. 

 
1 See Building Better Models with JMP Pro, Chapter 4, for additional information on multicollinearity and VIF, and techniques for 
addressing severe multicollinearity. 



 

 Exhibit 9 Fit Model Dialog with Stepwise Personality 

 

 

Stepwise regression provides a number of stopping rules for selecting the best subset of variables for our 
model. The default rule is Minimum BIC, or minimum Bayesian Information Criterion. The Direction, which 
is set to Forward by default, indicates that variables will be added to the model one at a time. After you 
click Go, the model with the smallest BIC statistic is selected.  

Another common rule, which works in a similar manner, is Minimum AICc (Akaike’s Information Criterion, 
with a correction for small sample sizes). Both of these rules (Minimum BIC and Minimum AICc) attempt 
to explain the relationship between predictors and a response without building models that are overly 
complex in terms of the number of predictors. Since different criteria are used to determine when to stop 
adding terms to the model, these stopping rules may lead to different “best” models (see Burnham, 2002).  

For this example, we use the Minimum AICc stopping rule (we revisit the Minimum BIC stopping rule in an 
exercise). After clicking Go, the model with the smallest AICc statistic is selected.  

Stepwise selects six variables for the model. These are checked under Current Estimates in Exhibit 10. 
Note that when using AICc (or BIC), resulting models may include terms that are not significant. This is 
because both AICc and BIC build models based on important effects (i.e., effects that explain the 
relationship between the response and predictors) rather than searching for significant effects (see 
Burhnam, 2002). However, in this example, all six selected variables have low p-values. 



 

 Exhibit 10 Stepwise Regression Dialog with Model Variables Selected 

 

 

We now run this model (click Run Model) and explore the results (see Exhibit 11).  

As expected, the overall model is significant with a p-value < .0001, as are all of the terms in the model. 
The R Square is 0.5986, indicating that our model explains nearly 60% of variation in the response. 

 Exhibit 11 Model Results, Reduced Model 

 

Before interpreting the results of the regression model, we check that the regression assumptions are 
met; namely, that our model errors are independent, have equal variance, and are normally distributed. 



 

Another key assumption is that the relationship between our response and the predictors is linear (i.e., 
that there isn’t an underlying non-linear relationship that we’ve missed). 

Checking Model Assumptions 

Variation in the residuals (which is another word for the errors) shows us variation in the response that is 
not explained by the model that we have fit. Plots of residuals can be used to verify that our assumptions 
about model errors were correct. If our model assumptions are met, points should be randomly scattered 
above and below the center line (zero), with no obvious pattern (just a cloud of seemingly random points). 
An obvious pattern, such as curvature, would be an indication that our current model is inadequately 
explaining the relationship between the predictors and response, that certain observations are influencing 
our model, or that something is missing from the model. 

Since our data have been amassed from over 7,400 different customers, we have some assurance that 
the independence assumption is met. The residual versus predicted value plot (Exhibit 12) shows some 
diagonal striations in the lower left corner (under the red triangle for the response, select Row Diagnostics 
> Plot Residual by Predicted).  

To explore these values, we use the lasso tool on the toolbar to select the observations (select the lasso 
tool, then draw a circle around the points), go to the data table, and then use the F7 function key to scroll 
through selected observations in the data table. The first strip on the left corresponds to revenue $0.01, 
while the second corresponds to revenue $0.02. This is the result of the fact that there are many 
customers who generate little, if any, revenue for the bank. 

There appear to be two clusters or groupings of points (above and below Log(Rev_Total) Predicted = 0). 
Otherwise, the residual plot shows no unusual patterns and points appear randomly scattered on either 
side of the center line (zero).  

 Exhibit 12 Residual versus Predicteds 

 

For further exploration of the regression assumptions, we save residuals to the data table. We also save 
Cook’s D values (under the red triangle, select Save Columns > Residuals and Cook’s D – these values 
are saved in two new columns in the data table). We use the Distribution platform to generate a histogram 
of the residuals, and then use a red triangle option to add a normal quantile plot (Exhibit 13). These plots 
provide evidence that the normality assumption has been met.  



 

 Exhibit 13 Distribution of Residuals with Normal Quantile Plot 

 

We also see (in Exhibit 13) that there are no serious outliers. A quick peek at Cook’s D values, again 
using the Distribution platform, confirms that there are no highly influential observations (see Exhibit 14). 
A high Cook’s D value (>1) for a particular observation indicates that  model predictions with and without 
that observation are different. All values are very low (none of the values are >1). As such, we can 
conclude that no single point is exerting too much influence over our model.  

 Exhibit 14 Checking Assumptions with Cook’s D  

 

Interpreting Our Regression Model 

After investigating residuals and looking at Cook’s D values, we have confidence that the regression 
assumptions have been satisfied. Our final model, shown in Exhibit 15, includes the following variables: 

• The total account balance (Log(Bal_Total)) 

• Whether the customer received a promotional offer (Offer) 

• Credit card activity (CARD) 

• Personal loan account activity (LOAN)  

• Insurance account activity (INSUR)  

• Checking account activity (Check) 

All significant variables except Log(Bal_Total) are binary categorical variables. For the continuous 
predictor, Log(Bal_Total), the coefficient in the parameter estimates table (top in Exhibit 15) indicates how 
revenues change as the account balance changes. A positive coefficient indicates that revenues increase 
on average as account balances increase. The coefficient value itself is somewhat difficult to interpret 
because it reflects the transformation of Rev_Total to Log(Rev_Total). 



 

 Exhibit 15 Exploring the Reduced Model with the Prediction Profiler 

 

For each of the two-level categorical predictors, parameter estimates show how the average response 
changes at the low level of each predictor. For example, the coefficient for CARD[0] is negative 0.7964, 
indicating that log revenues are 0.7964 lower on average if credit card activity is low, and 0.7964 higher 
on average if credit card activity is high. The coefficients for LOAN, Check and INSUR are all positive, 
indicating that low activity in these three accounts leads to higher revenues. 

Note: When fitting regression models in JMP, two-level categorical predictors are automatically 
transformed into coded indicator variables using a -1/+1 coding scheme. The parameter estimate is 
reported for the lowest level or value of the predictor. In this example, CARD is a nominal predictor 
with levels with 0 and 1. The term in the reduced model is represented as CARD[0], and the parameter 
estimate is -0.7964 (see Exhibit 15). The estimate for CARD[1], which is not reported, is +0.7964. To 
display both estimates, select Expanded Estimates from the top red triangle > Estimates. 

Many statistical software packages require dummy coding of categorical predictors using a 0/1 
“dummy” or “indicator” coding scheme. This coding is done prior to fitting the model, and results in 
different parameter estimates and a different interpretation of these estimates. For example, the 
parameter estimate for CARD, using 0/1 dummy coding, is 1.5928 instead of -0.7964. The sign is 
different, and the estimate is exactly twice the magnitude. To confirm this, change the modeling type 
for CARD to Continuous (to tell JMP to use dummy coding) and refit the reduced model shown in 
Exhibit 4.28. Note that, although the parameter estimates are different, the two coding schemes 
produce identical model predictions.  

To view the indicator-coded version of parameter estimates in the Fit Least Squares output, select 
Indicator Parameterization Estimates from the top red triangle > Estimates. Further details of how JMP 
transforms categorical factors can be found in the Statistical Details section of the book Fitting Linear 
Models (under Help > Books). 

Using the Prediction Profiler 

The Prediction Profiler (see the bottom of Exhibit 15) can help us understand how changes in the values 
of predictor variable impact Log(Rev_Total). To turn on the Profiler, select Factor Profiling > Profiler from 
the red triangle for the variable. 

The Profiler shows the predicted response (on the far left) at specified values of each of the predictor 
values (given at the bottom). Initial values for the predictors are predictor averages, and vertical red lines 
are drawn at these values. The starting value for the response is also the overall average (the mean 
Log(Rev_Total) in this example), and the bracketed values are the 95% confidence interval for the 
average. The slopes of the lines for each predictor indicate whether predicted Log(Rev_Total) will 
increase or decrease if predictor value increases, assuming that other predictor values are held constant. 



 

Clearly, Log(Bal_Total) has a large positive effect on the response (i.e., the slope of the Profiler line is 
steep). Three predictors, Offer, LOAN and INSUR, while significant, have a relatively small effect on the 
response (the profile lines are relatively flat. 

To show the predicted values for each bank customer, the prediction equation (the formula) can be saved 
to the data table (red triangle, Save Columns > Prediction Formula). Unfortunately, these are the log 
predicted values, which are difficult to interpret.  

The inverse transformation (in this case the exponential, or Exp function) can be used to examine 
predicted values on the original scale. To apply this transformation, create a new column in the data table 
(we’ve named this column Pred Rev_Total). Then, right-click on the column and select Formula to open 
the Formula Editor, and use the Transcendental > Exp function from the Functions (grouped) list (see 
Exhibit 16).  

Note that this formula can also be created using a shortcut. Simply right-click on the saved prediction 
formula column, and select New Formula Column > Transform > Exp. JMP will create a new column with 
the stored formula shown in Exhibit 16. 

 Exhibit 16 Transforming Predicted Log(Rev_Total) to Predicted Rev_Total 

 

Now we can explore the distribution of these values using Distribution or the Graph Builder (see Exhibit 
17). 

 Exhibit 17 Distribution of Predicted Rev_Total 

 

We can also explore the formula itself using Graph > Profiler (Exhibit 18). Select the transformed 
prediction formula as the Y, Prediction Formula, and check the Expand Intermediate Formulas box to drill 
down to the original saved prediction formula. Now, we can readily see and explore the impact of 
changes to each of the variables on the predicted revenues in the original scale.  



 

 Exhibit 18 Prediction Profiler for Predicted Rev_Total 

 

 

Summary  

Insights   
It is clear that high account balance customers and those who use their credit cards frequently generate 
more revenue. What is curious is that high checking account usage seems to indicate lower revenue, and 
that customers with higher activity on loan and insurance accounts have lower predicted revenue on 
average. 

Implications    
Was the promotional offer successful? That is, did it lead to increased revenue? For a customer 
maintaining an account balance of $82,500, with low credit card, loan, insurance and checking account 
activity, the promotional offer increased revenues from $11.08 to $12.75 on average. If this same 
customer had high credit card activity instead of low, the predicted revenue increased from $54.5 to 
$62.7. (Click and drag the vertical red lines in the prediction profiler to see how the predicted response 
changes as you chance values of the predictors). However, this analysis does not determine return on 
investment. Further information would need to be gathered to determine the cost of the promotional offer 
program and to examine the increased revenue relative to that cost.  

JMP Features and Hints    

The Graph Builder was used to explore the shape of the response distribution and to dynamically apply 
a log transformation. The Distribution platform was used to explore distribution shapes and potential 
relationships between the variables. A least squares regression model was fit using Fit Model, and 
Stepwise Regression was used to reduce the model. Residuals were used to explore model assumptions, 
and Cook’s D values were saved to check for influential observations. 

Since the model was created to predict the Log of the response, the prediction formula was saved to the 
data table and the inverse transformation (Exp) was applied to the predicted values. The Prediction 
Profiler was then used to explore and understand the relationships between the predictors and the 
response, in the original units (revenue, rather than log revenue). 

 

Exercises 

Exercise 1: In this exercise we use the BankRevenue.jmp data. 

Fit a full model to Log(Rev_Total) using Log(Bal_Total) and the other variables as model effects (using 
main effects only). Note, you may need to recreate these columns. Use the Minimum BIC stopping rule 
and stepwise regression to build your model.  



 

a. Compare your reduced model to that obtained using Minimum AICc in this chapter. Describe the 
differences in terms of the variables in the model and key statistics (adjusted R Square, RMSE, 
and other statistics provided).  

b. Which is the “better” model? Why? Does one model do a better job of predicting the response 
than the other? Explain 

 

Exercise 2: Continue with the BankRevenue.jmp data.  

Instead of fitting a model using the transformed variables, fit a model using the original (untransformed) 
variables. Use Rev_Total as the response, and Bal_Total and the other variables as model effects. Use 
stepwise and your preferred stopping rule to build the model.  

a. Restate the model assumptions presented earlier in this case. 

b. Use the tools covered in this chapter to check model assumptions. Which tools should you use to 
check these assumptions? Explain how each tool helps check assumptions. 

c. Explain why the model assumptions are or are not met. 

d. Does it make sense to use this model to make predictions? Why or why not? 

 

Exercise 3: Use the BostonHousing.jmp data set from the Sample Data Library (under the Help menu) 
for this exercise. The response of interest, mvalue, is the median value of homes for towns in the Boston 
area in the 1970s. 

a. Use the tools such as the Columns Viewer (from the Cols menu), Analyze > Fit Y by X, and 
the Graph Builder (from the Graph menu) to explore the data.  

i. Are there any potential data quality issues (other than the fact that the data are from 
the 1970s)? Determine what actions, if any, should be taken to address data quality 
issues that you identify. Document what you discover, and any steps you take to 
address these issues. 

ii. Do there appear to be any relationships between the predictors and the response? 
Describe what you observe. 

b. Fit a model to mvalue using only chas and rooms. Recall that rooms is the number of rooms 
(rooms) and chas is a dummy variable (chas=1 indicates the town tracks the Charles River). 

i. Write down the equation for this model. 

ii. Interpret the coefficients for chas[0] and rooms. 

iii. What is the predicted mvalue for a home that tracks the Charles River and has 6 
rooms? 

c. Fit a model to mvalue using all of the other variables as model effects. Use the Minimum BIC 
stopping rule and stepwise regression to build your model. How many terms are in the final 
model? Which terms are not included in the model?  

d. Check model assumptions. Are model assumptions met? Explain. 

e. How would a realtor, selling homes in the Boston area (in the same time period), use this 
model? How would a potential home buyer use this model? 
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