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Cell Phone Service1 
Multiple Regression - Two Predictors 

Background 

What impacts cellular phone call performance?  Physical obstructions, such as buildings and mountains, 
can interfere with radio signal signals.  More recent scientific studies suggest that radio waves can also 
be influenced by the effect that wind has on vegetation.  Wind-induced movement of large trees, for 
example, can create a moving barrier between a radio transmitter and the signal destination.  The result 
is called wind-induced fading, which predicts that higher wind speeds will result in degraded cell phone 
performance.   

Knowing the impact of wind-induced fading has important business implications for Reliable Wireless, a 
mobile phone company in a Midwestern city in the U.S.  If wind-induced fading is impacting the quality of 
cell phone service to customers, this must be considered when deciding how best to improve service.  
Although Reliable Wireless has no control over climatic conditions, decisions can be made about things 
such as data call capacity, number and configuration of base stations, band spectrums, and choice of 
wireless technologies.  Knowledge of the impact of wind-induced fading on call performance should factor 
into the overall decisions about capital expenditures on equipment and technology.   

The Task     

What do the data have to say about the impact of wind-induced fading and barometric pressure on cell 
phone call performance at Reliable Wireless? 

The Data Cell Phone Service.jmp 

The data table contains hourly data on weather conditions and call performance for the Reliable Wireless 
network from about August to mid-October of a recent year.  The call performance data comes from 
Reliable Wireless databases and the climate information from the local airport.  Among the variables in 
the data set are Hour and: 

Pressure  Barometric pressure in inches of mercury at the end of the hour 
Wind Speed  Wind speed measured in miles per hour at the end of the hour 
Bad Calls (%)  Percentage of bad calls relative to the total number of calls made that hour.  

Total calls is a measure of all calls terminated (normally or otherwise) that hour.  
Bad calls is the sum of the number of failed (unsuccessful connection) or 
dropped (interrupted connection or delayed transmission) calls that hour.  The 
word “calls” is used generically to include voice, text and email transmissions.   

 

 

 

 

 

1These data are real, although the company name and its location have been disguised.  
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Analysis  

The average percentage of bad calls over this time period is 1.2% (Exhibit 1) with standard deviation of 
0.37%.  The largest percentage of bad calls in any one hour was 2.53%.   

 Exhibit 1   Distribution of Bad Calls (%) 

 

 

(Analyze > Distribution, 
select Stack under the top 
red triangle for a horizontal 
layout) 

         

 

 

Dynamic plot-linking indicates that lower values of Bad Calls (%) are generally associated with lower 
values of Wind Speed and higher values of Pressure. 

 Exhibit 2   Distributions of Bad Calls (%), Wind Speed and Pressure with Dynamic Linking 

 

 

 

 

 

 

To better understand these patterns, we next construct two simple regression models.    

A simple linear regression model (Exhibit 3) indicates that Wind Speed is statistically related to 
percentage of bad calls (the p-value is < 0.0001). 
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 Exhibit 3   Regression with Bad Calls (%) and Wind Speed 

 

(Analyze > Fit Y by X.  Use Bad Calls (%) as Y, Response 
and Wind Speed as X, Factor.  Under the red triangle 
select Fit Line.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 4 shows that barometric pressure is indeed related to percentage of bad calls, since Pressure is a 
statistically significant predictor of Bad Calls (%): 
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 Exhibit 4   Regression with Bad Calls (%) and Pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table below summarizes the results from Exhibits 3 and 4.   

 Regression Equation RMSE R-squared 

Exhibit 3 Bad Calls (%) = 0.8 + 0.05*Wind Speed 0.27 0.451 

Exhibit 4 Bad Calls (%) = 26.9 - 0.86*Pressure 0.32 0.211 

 

The Wind Speed model estimates a 0.05% increase in bad calls per mile per hour of wind speed, and the 
model explains about 45.1% of the variation in percentage of bad calls.  The Pressure model estimates a 
decrease in the rate of bad calls of 0.86% per inch of mercury, and about 22.1% of the variation in 
percentage of bad calls is associated with variation in pressure.   
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Each of these results, though, comes from simple linear regression models in which each model contains 
only one predictor—either wind speed or barometric pressure. 

What would happen if we included both predictor variables in one regression model?  Given the results 
shown in Exhibits 3 and 4, it would be natural to think that a two-predictor model would generate these 
results: 

Bad Calls (%) = ? + 0.05*Wind Speed – 0.86*Pressure     

R-squared = 0.451 + 0.221 = 0.672  

After all, since 45.1% of the variation in Bad Calls (%) is associated with variation in wind speed, and 
22.1% of the variation in Bad Calls (%) is associated with variation in barometric pressure, then the 
combined influence should be 67.2%.  Right? 

Exhibit 5, the two-predictor model, suggests otherwise. 

 Exhibit 5   Regression with both Pressure and Wind Speed 

 

(Analyze > Fit Model; select Bad Calls (%) as Y and  
Pressure and  Wind Speed as a model effects, and hit Run.  
Some of the output has been hidden.) 

 

  

 

 

 

 

Note that both slope estimates have declined in absolute value.  Note too that the R-squared value in 
Exhibit 5 is 0.48, quite a bit lower than the suspected 0.672.  Thus, the regression results for the two-
predictor model are, in actuality, 

Bad Calls (%) = 11.49 + 0.04*Wind Speed – 0.35*Pressure     

   R-squared = 0.48 

Why is the two-predictor regression model different from what we might have expected?  

Exhibit 6 displays the correlations among the three variables.  As expected, Bad Calls (%) is positively 
correlated with Wind Speed (r = 0.672) and negatively correlated with barometric Pressure (r = 0.47).  
More importantly, though, is the correlation between the two predictor variables, Wind Speed and 
Pressure (r = -0.477): higher barometric pressure is related to lower wind speed, a well-known 
atmospheric relationship.   
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 Exhibit 6   Correlations and Scatterplot Matrix 

 

(Analyze > Multivariate Methods > Multivariate; select 
Pressure, Wind Speed and Bad Calls (%) as Y, 
Columns, and hit OK.  Under the lower red triangle, 
select Shaded Ellipses.) 

 

 

 

 

 

 

 

 

 

 

 

 

In essence, the simple linear regression models in Exhibits 3 and 4 show:  

• the relationship between percentage of bad calls and wind speed without regard to the influence 
of the pressure (Exhibit 3), and 

• the relationship between percentage of bad calls and pressure without regard to the influence of 
the wind speed (Exhibit 4), 

whereas Exhibit 5 indicates the combined influence of pressure and wind speed on call performance, 
including any interrelationship between the two predictor variables.   

A dynamic graph for visualizing the relationships between the two predictors and the response is a three-
dimensional scatterplot (Exhibit 7).     
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 Exhibit 7   Three-Dimensional Scatterplot and Surface Profile of Model 

 

(In the Fit Model analysis window (see Exhibit 
5), select Factor Profiling > Surface Profiler from 
the top red triangle.  To display the data points, 
select Actual under Appearance.) 

 

 

 

 

 

 

 

  

 

 

In regression involving one predictor, we produce a two-dimensional scatterplot to represent the 
relationship between the two variables, and the regression model is a line.  With two-predictor models, 
the model is actually plane in three-dimensions.   
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Summary  

Statistical Insights     

This case looks at regression models containing two predictor variables.  The term “regression model” 
takes on different meanings depending on whether that model contains one or two predictor variables. 

• One Predictor.   The “regression model” is the line that best fits the scatter of points in 2-D.  
A scatterplot is used to visualize the relationship between a response variable and one 
predictor variable.  Mathematically, we would write the regression model as:  

110
ˆ XbbY +=   

• Two Predictors.   The “regression model” is the plane that best fits the cloud of points in 3-D.  
A surface profile is used to visualize the relationship between a response variable and two 
predictor variables.  The generic mathematical representation is: 

22110
ˆ XbXbbY ++=  

A multiple regression model (one with two or more predictor variables) combines the influence of each 
predictor variable on the response variable after accounting for the linear influence of the other predictor 
variables in the model.  We’ll see more about this in the exercise.   

In this particular data set, the R-squared statistic from the two-predictor model (Exhibit 5) was smaller 
than the sum of the R-squared statistics from the two simple regression models (Exhibits 3 and 4).  That 
need not always be so.  Suppression is the term used to describe the opposite outcome, although it 
occurs less often in practice. 

This case demonstrates that inclusion of all relevant factors into a regression model is important when 
trying to get a complete picture of relationships among many variables.  Thus, the next step of the 
statistical analysis would be to include predictors in addition to weather that might also influence cell call 
performance.   

Managerial Implications       

There is some evidence to suggest that interrupted cell phone service is related in part to climate factors 
outside of the control of management.  Also outside of management’s control is the location of the caller; 
wind-induced fading won’t be much of a problem for customers in areas with limited foliage.  If indeed 
wind-induced fading is in play, we might see less interrupted service during winter and spring months 
when deciduous trees are without leaves.  Management might ask that an expanded study be conducted 
to determine whether there are seasonal influences at work.   

JMP Features and Hints      

To estimate regression models with one predictor variable, use Fit Y by X.  Regression models with one 
predictor can also be explored using Graph > Graph Builder.  To estimate regression models with two or 
more predictor variables, use Fit Model.  As always, explore your variables using the Distribution platform 
and Graph Builder before beginning any formal analysis. 

Many analysis options are available Fit Model, including leverage plots.   A leverage plot shows whether 
an individual predictor is statistically significant; it displays the influence of a predictor variable on Y after 
accounting for the linear influence of the other predictor.    
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Exercises 

Exercise 1 

Estimate a regression model for Bad Calls (%) with Wind Speed, Pressure, and Hour as the predictors. 

1. With Wind Speed and Pressure in the model, is Hour a significant predictor of Bad Calls (%)? 
2. Compare the RMSE and R-Squared values for this model to the values for the two-predictor 

model.  Does this three-predictor model do a better job of explaining variation in Bad Calls (%) 
than the two-predictor model? 

Exercise 2    

This exercise is designed to show more formally what is meant by multiple regression accounting for the 
linear influence of other predictor variables in the model.   

1. Estimate a regression model in which Bad Calls (%) as the response variable and Wind Speed is 
the predictor.  From this regression model, save the residuals to the JMP worksheet (red triangle 
next to Linear Fit).  Call these residuals Step 1 Resids. 

2. Estimate a regression model in which Pressure is the response variable and Wind Speed is the 
predictor variable.  From this regression model, save the residuals to the JMP worksheet; name 
them Step 2 Resids.   

3. Estimate a regression model in which the Step 1 Resids serve as the response variable and the 
Step 2 Resids serve as the predictor variable. 

Explain any similarity you observe between the slope from the regression in step 3 and the slopes from 
the two-predictor regression model shown in Exhibit 6.   

Next, do this: 

4. Estimate a regression model in which Bad Calls (%) is the response variable and Pressure is the 
predictor.  From this regression model, save the residuals to the JMP worksheet.   

5. Estimate a regression model in which Wind Speed is the response variable and Pressure is the 
predictor variable.  From this regression model, save the residuals to the JMP worksheet.   

6. Estimate a regression model in which the residuals from step 5 serve as the response variable 
and the residuals from step 5 serve as the predictor variable. 
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