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Archosaurs: The Relationship Between Brain and Body Size
Distribution, Regression, Transformation
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Background

Reptiles of the subclass Archosauria include the now extinct dinosaurs and pterosaurs (flying or gliding
dinosaurs) as well as birds and crocodiles. For any subclass of animals, although individual species vary
greatly in size, it has been found that there is a relatively consistent relationship between body size and
brain size.

In “Relative Brain Size and Behavior of Archosaurian Reptiles” (Annual Review of Ecology and
Systematics 1977, by James A. Hopson) the author cites a widely observed power law relationship:

Brain wgt = k x (Body wgt)?/3
Using logarithms, this can be transformed into a linear relationship:
Log(Brain wgt) = Log(k) + 0.67 X Log(Body wgt)

It should be noted we would expect “smart” animals, such as the mammals, to differ from “dumb” animals,
such as the reptiles, by having a linear relationship with a larger intercept. In other words, “k” would be
larger for mammals than reptiles. Also, it does not matter which logarithmic transformation we use
(common logs, natural logs or any others), but we will use the natural log.

Power law models are based on the relationship y = ax?, which can be restated as a linear relationship
log(y) = log(a) + b x log(x) using a logarithmic transformation. Power law models represent scale
invariant relationships, that is, relationships thought to hold in the same manner for very large and very
small observed values. For example, in biology the relationship between habitat area and number of
species fits a power law model quite well (see Case 1 and Exercise 22 from Chapter 8 of The Statistical
Sleuth, Second Edition, Ramsey and Schafer, 2002). A Web search on power law models will result in
dozens of examples, taken mostly from physics and engineering.

This is a typical example of a power law model. Although reptiles vary greatly in size, we would expect

about the same proportion of their mass to be devoted to brain size. We expect the same for mammals,
except we expect the brains of mammals to be bigger than the reptile of the same overall mass, hence

the greater value for “k”.

The Task
Determine whether a power law model fits the data. In other words:

o Does it make sense to take logarithmic transformations of body weight and brain weight in order
to perform a linear regression?

e Are the assumptions of the linear regression met?

e |s our final model a good fit to the data?

e Does the slope of 2/3 actually seem to match the data?



Other questions of interest:

¢ How do we make predictions in a power law model?
e What do large positive and negative residuals mean in this context?

The Data Archosaurs.jmp

Using fossil records and numerous sources, the author was able to compile estimates of the body size
and brain size for several Archosaurs (Exhibit 1).

Type The type of Archosaur.

Details The specific name for that species.
Body Weight Estimated body weight in kilograms.
Brain Weight Estimated brain weight in grams.

It should be noted that there is quite a bit of error in these estimates. First, the author of the original article
needed to use estimates based on fossils for most of the now extinct species. Second, the numbers
themselves were estimated from a figure in that article.

Analysis

We start by exploring the distributions of Body Weight and Brain Weight. Exhibit 1 shows histograms and
summary statistics for the two measures.

Exhibit 1  Distributions of Body Weight and Brain Weight
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The histograms of both brain weight and body weight are right-skewed. Since we are ultimately interested
in modeling the relationship between these two variables, we might consider a transformation to make the
distributions more normal. The logarithmic transformation often works well when data are right-skewed.

A second indication of when the logarithmic transformation makes sense to normalize data is when all the
values are positive and cover several orders of magnitude (The Statistical Sleuth, Second Edition, Page
68). For example, the ratio of 75 to 25 quartile is quite revealing. For Body Weight this ratio is
2622/10.19 = 257.3, while this same ratio is 120/3 = 40 for Brain Weight. (Note: Comparing ratios to
judge the span of orders of magnitude only makes sense for data restricted to be positive.)

It is obvious from Exhibit 2 that linear regression involving body weight and brain weight is not useful — a
straight line does not fit the points very well.

Exhibit 2 Regression with Body Weight and Brain Weight, Prior to Transformations
4~ Bivariate Fit of Brain Weight By Body Weight
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(Analyze > Fit Y by X; Use Brain Weight as Y, Response and Body Weight as X, Factor. Then select Fit Line from
the top red triangle.)

To transform the two variables, we create two new columns, and apply a log transformation using the
Formula Editor (Exhibit 3).

Exhibit 3 Transforming Body Weight

(64 Log(Body Weight) - JMP =S
Table Columns v| = Functions (grouped) v| oK
Type (= Row 7 | (Create a new column in the data table, and rename it
Details @|E|@| Numeric Cancel | Log(Body Weight). Right click on the column header, and
Body Weight | E|E|E| Transcendental |- [ Apply | select Formula to open the Formula Editor. To create the
Brain Weight E|E|E“| Trigonometric formula:
Log(Body Weigh | ¥Z(t=|#&| |Character . ) . .
Log(Brain Weigh Comparison Clear | i.ogllck on Transcendental in the Functions list, and select
Conditional y . .
Probabilty @| 2. Sglect Body Weight from the columns list.
Discrete Probability — 3. Click OK.
Note: To create this transformed variable directly from the
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Formula Column > Transform > Log. Repeat for Log(Brain
- Weight).)
Log o~ O

We now see that the extreme right-skewness has been removed from the variables (Exhibit 4). In
addition, all observed values are roughly the same order of magnitude.



Exhibit 4 Distributions of Log(Body Weight) and Log(Brain Weight)
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Now we fit a model using the transformed variables instead the original variables. A linear model seems
to fit the transformed data well (Exhibit 5).

Exhibit 5 Regression with Log(Body Weight) and Log(Brain Weight), After Transformations
4 (~Bivariate Fit of Log(Brain Weight) By Log(Body Weight)
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The linear regression involving Log(Body Weight) and Log(Brain Weight) looks reasonable, but a more
careful assesment of the model requires evaluating four key assumptions. This may lead us to discard the
model as unacceptable, adopt the model with reservations, or adopt the model with confidence.

The assumptions we are concerned about are:

Observations are independent.

The distribution of the observations around the line is normal.
The spread is equal at all levels of the predictor.

The line fits the data.
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1. Observations Are Independent

Observations are most often not independent when there are serial or clustering effects (The Statistical
Sleuth, 62-63). Serial effects occur when observations are measured close in time or space. Clustering
effects occur when two or more observed values are likley to be more alike than two randomly chosen
observations. For example, two mice from the same litter would be expected to be more alike than two
mice chosen at random. Given the way the data ere collected, neither of these effects seems relevant
here. We'll assume that the measurements are independent.

If the independence assumption were violated, this would usually be a very big problem. For example,
while point estimates may not be greatly affected, hypothesis tests may produce misleading p-values, and
confidence intervals for the estimates may not be the correct width (see Chapter 15 of The Statistical
Sleuth). The impact can be quite large and in either direction (for example, confidence intervals can be
too wide or too narrow).

2. The Distribution of the Observations Around the Line is Normal
We hope that the true errors (deviations from the true model) are normal. But we can’t measure true
errors — the residuals (deviations from the fitted model) are the closest thing we have. So we check to see

if the residuals are normally distributed using a normal quantile plot.

All the residuals fall close to a straight line (Exhibit 6), indicating that the residuals are approximately
normal.

Exhibit 6 Residual Normal Quantile Plot

4 Residual Normal Quantile Plot
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3. The Spread Is Equal at All Levels of the Predictor

A Residual by X Plot reveals how the residuals vary across levels of the predictor (X) variable. We would
like to see the residuals falling completely at random, with points spread equally above and below the
center line and with no obvious pattern. In Exhibit 7, there appears to be somewhat of a gap near the
middle of the residual plot. This may be due to one observation, a mild outlier, in the middle of the plot.
However, most of the points do indeed appear randomly scattered across the levels of the X variable.
Although the residuals are not perfect, they are acceptable. (Note: We’'ll talk more about how to interpret
residuals later.)

Exhibit 7 Residual by X Plot

4 Residual by X Plot
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4. The Line Fits the Data
The usual test for a linear model is:

Ho: a single mean fits the data
Ha: a line fits the data

For this test, we want a small p-value (and a large F statistic) as evidence that the line is modeling
something.

A lack of fit test, on the other hand, tests:

Ho: a line fits the data
Ha: a more complex model fits the data

The nature of the “more complex” model would vary from circumstance to circumstance. For example, if
there are replicated values (repeated X values), the more complex model may involve fitting a separate
mean to each level of the replicated X values. When this is not possible, the more complex model might
include a higher order polynomial (a curve). Or the complexity may lie in other variables that were not
used in the model.

In any case, if a line is a reasonable model, the lack of fit test will produce a relatively large p-value
(typically > 0.05 is considered sufficiently large). In our case, with a p-value of 0.1187 (Exhibit 8), we have
little evidence that a line is not sufficient to fit the data. (Note: Sorry for the double negative language, but
we cannot say we have evidence that the line fits the data — that would be affirming the null hypothesis.
Furthermore, the p-value is not that big, so we don’t want to fall in love with the line.)

Exhibit 8 Lack of Fit Test

4 Lack Of Fit (Note: The Lack Of Fit results display by default only if the
Sum of data set has replicated X values.)
Source DF Squares Mean Square F Ratio
Lack Of Fit 18 9.3183358 0517685 435717
Pure Error 1 00118812 0.011881 Prob=>F
Total Error 19 9.3302170 0.1187

Given what we have seen so far, a linear model is reasonable, although not perfect. A power law model
does seem to fit the data.

In the article we have cited, the author claims, but does not test, the notion that the slope of the power law
regression line should be 2/3. Our estimated slope is 0.5162 (Exhibit 9). Is this close to 2/3 or far from
2/3, based on the variation in the data?

Exhibit 9 Parameter Estimates

4 Parameter Estimates
Term Estimate Std Error t Ratic Prob>|t|

Intercept 02150713 0245176  0.88 0.3913
Log(Body Weight) 05162109 0038744 1332 <.0001*

It is easy to test this claim with a simple hypothesis test:



Ho: the slope is 2/3
Ha: the slope is different from 2/3

_0.5162 — 0.6667

=— ]
0.038744 388!

Yikes! The data does not support this hypothesis. In fact, a 95% confidence interval (with 21 —2 =19
degrees of freedom) is:

0.5162 + 2.093 x 0.03874 = (0.435,0.5973)

The entire confidence interval (shown again in Exhibit 10) is well below 2/3.

Exhibit 10 Parameter Estimates with 95% Confidence Intervals

< Parameter Estimates
Term Estimate Std Error t Ratio Preob=|t] Lower 95% Upper 95%

Intercept 0.2150713 0.245176 0.88 03913 -0.298088 0.7282302
Log(Body Weight) 05162109 0038744 13.32 <_0001‘|D_435118? 0.5973031

(Right-click over the Parameter Estimates table and select Columns > Lower 95% and Columns > Upper 95%.)

It would be interesting to examine other data sets claiming this value to see if a slope of 2/3 is reasonable
for those data sets.

Other Questions of Interest

1. Predictions in the Power Law Model

Prediction in a power law model is similar to other models, except that we must take the logarithmic
transformations into account. Suppose we want to estimate the average brain weight (in grams) of
another species of archosaur with a body weight of about 20 kilograms.

For our data, the model is:

Log(Brain Weight) = 0.2151 + 0.5162 x Log (Body weight)

We begin with:
Log(Brain Weight) = 0.2151 + 0.5162 x Log(20) = 1.7615

This is NOT a very useful answer! We want to know the brain weight, not the logarithm of the brain
weight.

To find the predicted brain weight, we must use the inverse transformation. For the natural logarithmic
function, the inverse is the exponential function:

exp(1.7615) = 5.82 grams = predicted brain weight (don’t forget the units).

These results are shown in Exhibit 11.



Exhibit 11  Predicting Brain Weight
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Brain Weight v P Trigonometric 2236 175 7.712443834 5164785973 41963186266  66.441285084
Log(Body Weigh  [#4][t=]|#] |Character
Log(Brain Weigh Comparison [ Clear | 63000 140 11.05089000 4.941642422 59196608252  372.28542261
Predicted Log(B! Conditional = fus 3.2 45 3589050118 3.806662489 206778262  7.9072702418
Exp(Predicted L¢ Probability 70000 335 11.15625052 5.814130531 50740400685  393.09411772
Discrete Probability ~ 8700 50 9071078304 3.912023005 4.897660507 133.9759769
3008 140 8.009030685 4.941642422 4.3494199825  77.433537093
3624 25 5892748574 3218875824 32569721553 25970782479
\Exp[Predicfed Log(Brain Welghf)]\ 19037 100 7551554639 4605170186 41132658758 61146087359
3 1380 45 7229838778 3.806662489 3.9471926513  51.789770613
=5 7071 25 6561172098 3.218875824 36020196436 36672224527
=i~ 1736 14 5156753802 2639057329 28770436546  17.761685807
= 5000 225 8517193191 5416100402 46117389914  100.65904274
18 Bird Archaeoptriyx 0.43 1.7 -0.84397007 0.530628251 -0.220595229  0.8020412574
19 Crocodilians A 100 10 4605170186 2302585093 25923101969  13.360601598
20 Crocodilians B 17.5 14 4766438333 2639057329 26755585674 14.52045623
21 Crocodilians G - - g -
22 I 20 + 2.995732273 - 1.7615008537 5.8211675624'

(In Fit Y by X, click on the red triangle for the Linear Fit and select Save Predicteds to save the fitted model to the data table. Then
create a new column in the data table and enter the formula editor as shown earlier. Select Exp from the Transcendental Functions
list, and then select Predicted Log(Brain Weight), and click OK. Finally, click to add a new row to the data table, and enter 20 in the
Body Weight column.)

2. What Do Positive and Negative Residuals Mean?

In this context, a positive residual is a species whose brain is larger than would be predicted based on the
model. A negative residual is a species whose brain is smaller than would be predicted by the model. We
could speculate that the largest positive residuals might belong to some of the smartest species of
archosaurs, and the negative residuals belong to some of the dumber species.

If this is the case, then the Stenonychosaurus is clearly the smartest archosaur (of this group), and the
Diplodocus and Tyrannosaurus are the least brainy (see Exhibit 12).

Exhibit 12 Residual by X Plot with Labels
4 Residual by X Plot
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(To label points with the row number, select the points on the graph or in the data table. Then select Rows > Label. To
permanently label points with the value of a column, right-click on the column name in the data table and select Label.
To reposition labels on a graph, click and drag the label.)

In the exercise we will look at mammals. Any idea which species the model will indicate is the
smartest?



Summary
Statistical Insights

A power law model did fit the data reasonably well. However, the slope suggested by the researcher does
not seem correct based on this small data set.

Consider a logarithmic transformation for modeling involving right-skewed data. But keep in mind that the
predicted response values will be in transformed units. The inverse transformation must be taken in order
to produce predicted values in original units.

Always evaluate the quality of a model using residual plots and the lack of fit test before performing
statistical inference. If model assumptions are violated, the model fit is not appropriate. For example, if
there is curvature in the residuals, a quadratic model may be required.

Implications

A word about building consensus in science: It is the ability of the power law to explain a lot of similar
data sets that gives it its power. Seeing this approach produce good results in many similar situations —
replication — is how the model gains credibility. A similar analysis involving the brain and body weights of
mammals is widely available (The Practice of Statistics in the Life Sciences, Second Edition, 2012, Moore
and Baldi, Example 4.2; The Statistical Sleuth, Second Edition, 2002, Ramsey and Schafer, Case 9.2)
and will be the basis for the exercises to follow.

JMP® Features and Hints

This case used the Distribution platform to display histograms and summary statistics and Fit Y by X to
model the relationship between two variables. In Fit Y by X, when a line is fit a variety of statistical output
is produced, including Parameter Estimates, the Summary of Fit, and an ANOVA table. If the data table
has replicated predictor values, lack of fit test results will also be provided. To explore residuals, select
“Plot Residuals” from the red triangle for the fitted model.

The formula editor was used to transform the variables. A number of transformations are available from
the formula editor. In addition, a utility for transforming multiple variables is available in the Sample Data
directory under the Help Menu (Open the Teaching Demonstrations outline under Teaching Resources
(click on the gray icon), and select utilColumnTransformation.)

Note that in Fit Y by X, transformations are also available from the Fit Special option under the top red
triangle. This bypasses the need to transform the variables prior to the analysis, and has the added
advantage of automatically transforming saved predicted values to the original units.

Also note that as of JIMP 11, variables can be dynamically transformed in any dialog window. Right-click
on the variable in the column selection panel, select Transform and then select the transformation of
interest (shown on the left in Exhibit 13). This creates a temporary variable. To save the transformed data
to the data table, right-click on the transformed variable (shown in italics), and select Add to Data Table
(on the right in Exhibit 13).
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Exhibit 13 Dynamic Transformation of Variables
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Exercises
From The Statistical Sleuth

Another example of a power law model involves 96 species of mammals (including humans). This also
involves body weight in kilograms and brain weight in grams.

The data are available in Archosaur Exercise.jmp.

1. Does it make sense to take logarithmic transformations of Body Weight and Brain Weight in

order to perform a linear regression?

Are the assumptions of the linear regression met?

Is our final model a good fit to the data?

Does the slope of 2/3 actually seem to match the data?

(Challenging) Do mammals appear to have generally larger brains than archosaurs, given their

body size? In other words, is the entire line for the mammals higher than the entire line for the

archosaurs?

6. If a species of mammals has a body size of about 20 kilograms, what would you estimate the
brain weight to be in grams?

7. Based on the residuals, what would you expect the four smartest mammal species to
be? Does this fit your intuition?

arwbd
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