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Archosaurs: The Relationship Between Brain and Body Size 
Distribution, Regression, Transformation 

 

Key ideas 
Distribution, Power Law Models, Logarithmic Transformations, Regression. 
 

Background 

Reptiles of the subclass Archosauria include the now extinct dinosaurs and pterosaurs (flying or gliding 
dinosaurs) as well as birds and crocodiles. For any subclass of animals, although individual species vary 
greatly in size, it has been found that there is a relatively consistent relationship between body size and 
brain size.   

In “Relative Brain Size and Behavior of Archosaurian Reptiles” (Annual Review of Ecology and 
Systematics 1977, by James A. Hopson) the author cites a widely observed power law relationship: 

𝐵𝑟𝑎𝑖𝑛 𝑤𝑔𝑡 = 𝑘 × (𝐵𝑜𝑑𝑦 𝑤𝑔𝑡)2/3 

Using logarithms, this can be transformed into a linear relationship:  

𝐿𝑜𝑔(𝐵𝑟𝑎𝑖𝑛 𝑤𝑔𝑡) = 𝐿𝑜𝑔(𝑘) + 0.67 × 𝐿𝑜𝑔(𝐵𝑜𝑑𝑦 𝑤𝑔𝑡) 

It should be noted we would expect “smart” animals, such as the mammals, to differ from “dumb” animals, 
such as the reptiles, by having a linear relationship with a larger intercept. In other words, “k” would be 
larger for mammals than reptiles. Also, it does not matter which logarithmic transformation we use 
(common logs, natural logs or any others), but we will use the natural log.   

Power law models are based on the relationship 𝑦 = 𝑎𝑥𝑏, which can be restated as a linear relationship 

log(𝑦) = log(𝑎) + 𝑏 × log(𝑥) using a logarithmic transformation. Power law models represent scale 
invariant relationships, that is, relationships thought to hold in the same manner for very large and very 
small observed values. For example, in biology the relationship between habitat area and number of 
species fits a power law model quite well (see Case 1 and Exercise 22 from Chapter 8 of The Statistical 
Sleuth, Second Edition, Ramsey and Schafer, 2002). A Web search on power law models will result in 
dozens of examples, taken mostly from physics and engineering.   

This is a typical example of a power law model. Although reptiles vary greatly in size, we would expect 
about the same proportion of their mass to be devoted to brain size. We expect the same for mammals, 
except we expect the brains of mammals to be bigger than the reptile of the same overall mass, hence 
the greater value for “k”. 

The Task     

Determine whether a power law model fits the data. In other words: 

• Does it make sense to take logarithmic transformations of body weight and brain weight in order 
to perform a linear regression?  

• Are the assumptions of the linear regression met?  

• Is our final model a good fit to the data?  

• Does the slope of 2/3 actually seem to match the data?  
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Other questions of interest: 

• How do we make predictions in a power law model? 

• What do large positive and negative residuals mean in this context? 

 The Data Archosaurs.jmp 

Using fossil records and numerous sources, the author was able to compile estimates of the body size 
and brain size for several Archosaurs (Exhibit 1).   

Type  The type of Archosaur. 
Details  The specific name for that species. 
Body Weight  Estimated body weight in kilograms. 
Brain Weight  Estimated brain weight in grams. 

It should be noted that there is quite a bit of error in these estimates. First, the author of the original article 
needed to use estimates based on fossils for most of the now extinct species. Second, the numbers 
themselves were estimated from a figure in that article.   

 
Analysis  

We start by exploring the distributions of Body Weight and Brain Weight. Exhibit 1 shows histograms and 
summary statistics for the two measures. 

 

 Exhibit 1    Distributions of Body Weight and Brain Weight  

(Analyze > Distribution; for a horizontal 
layout select Stack under the top red 
triangle.) 
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The histograms of both brain weight and body weight are right-skewed. Since we are ultimately interested 
in modeling the relationship between these two variables, we might consider a transformation to make the 
distributions more normal. The logarithmic transformation often works well when data are right-skewed.   

A second indication of when the logarithmic transformation makes sense to normalize data is when all the 
values are positive and cover several orders of magnitude (The Statistical Sleuth, Second Edition, Page 
68). For example, the ratio of 75th to 25th quartile is quite revealing. For Body Weight this ratio is 
2622/10.19 = 257.3, while this same ratio is 120/3 = 40 for Brain Weight. (Note: Comparing ratios to 
judge the span of orders of magnitude only makes sense for data restricted to be positive.)     

It is obvious from Exhibit 2 that linear regression involving body weight and brain weight is not useful – a 
straight line does not fit the points very well.   

 Exhibit 2    Regression with Body Weight and Brain Weight, Prior to Transformations 

(Analyze > Fit Y by X; Use Brain Weight as Y, Response and Body Weight as X, Factor. Then select Fit Line from 
the top red triangle.) 

To transform the two variables, we create two new columns, and apply a log transformation using the 
Formula Editor (Exhibit 3). 

 Exhibit 3    Transforming Body Weight 

 

(Create a new column in the data table, and rename it 
Log(Body Weight). Right click on the column header, and 
select Formula to open the Formula Editor. To create the 
formula:  

1. Click on Transcendental in the Functions list, and select 
Log. 
2. Select Body Weight from the columns list. 
3. Click OK. 
 
Note: To create this transformed variable directly from the 
data table, right click on the variable and select New 
Formula Column > Transform > Log. Repeat for Log(Brain 
Weight).) 

 

 

We now see that the extreme right-skewness has been removed from the variables (Exhibit 4). In 
addition, all observed values are roughly the same order of magnitude.   
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 Exhibit 4    Distributions of Log(Body Weight) and Log(Brain Weight) 

  

 

 

 

 

 

 

 

 

 

 

Now we fit a model using the transformed variables instead the original variables. A linear model seems 
to fit the transformed data well (Exhibit 5).   

 Exhibit 5    Regression with Log(Body Weight) and Log(Brain Weight), After Transformations 

 

(Analyze > Fit Y by X; Use Log(Brain 
Weight) as Y, Response and Log(Body 
Weight) as X, Factor. Then select Fit Line 
from the top red triangle.) 

 

 

 

 

The linear regression involving Log(Body Weight) and Log(Brain Weight) looks reasonable, but a more 
careful assesment of the model requires evaluating four key assumptions. This may lead us to discard the 
model as unacceptable, adopt the model with reservations, or adopt the model with confidence.   

The assumptions we are concerned about are: 

1. Observations are independent. 
2. The distribution of the observations around the line is normal. 
3. The spread is equal at all levels of the predictor. 
4. The line fits the data. 
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1.  Observations Are Independent 

Observations are most often not independent when there are serial or clustering effects (The Statistical 
Sleuth, 62-63). Serial effects occur when observations are measured close in time or space. Clustering 
effects occur when two or more observed values are likley to be more alike than two randomly chosen 
observations. For example, two mice from the same litter would be expected to be more alike than two 
mice chosen at random. Given the way the data ere collected, neither of these effects seems relevant 
here. We’ll assume that the measurements are independent.   

If the independence assumption were violated, this would usually be a very big problem. For example, 
while point estimates may not be greatly affected, hypothesis tests may produce misleading p-values, and 
confidence intervals for the estimates may not be the correct width (see Chapter 15 of The Statistical 
Sleuth). The impact can be quite large and in either direction (for example, confidence intervals can be 
too wide or too narrow).   

2.  The Distribution of the Observations Around the Line is Normal 

We hope that the true errors (deviations from the true model) are normal. But we can’t measure true 
errors – the residuals (deviations from the fitted model) are the closest thing we have. So we check to see 
if the residuals are normally distributed using a normal quantile plot.   

All the residuals fall close to a straight line (Exhibit 6), indicating that the residuals are approximately 
normal. 

 Exhibit 6    Residual Normal Quantile Plot  

 

(Click on the red triangle next to Linear Fit (at the 
bottom of the regression plot shown in Exhibit 5), and 
select Plot Residuals to produce a series of residual 
plots.)  

 

 

 

3.  The Spread Is Equal at All Levels of the Predictor 

A Residual by X Plot reveals how the residuals vary across levels of the predictor (X) variable. We would 
like to see the residuals falling completely at random, with points spread equally above and below the 
center line and with no obvious pattern. In Exhibit 7, there appears to be somewhat of a gap near the 
middle of the residual plot. This may be due to one observation, a mild outlier, in the middle of the plot. 
However, most of the points do indeed appear randomly scattered across the levels of the X variable. 
Although the residuals are not perfect, they are acceptable. (Note: We’ll talk more about how to interpret 
residuals later.) 

 Exhibit 7    Residual by X Plot 
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4.  The Line Fits the Data 

The usual test for a linear model is: 

Ho: a single mean fits the data 
Ha: a line fits the data 

For this test, we want a small p-value (and a large F statistic) as evidence that the line is modeling 
something.   

A lack of fit test, on the other hand, tests: 

Ho: a line fits the data 
Ha: a more complex model fits the data 

The nature of the “more complex” model would vary from circumstance to circumstance. For example, if 
there are replicated values (repeated X values), the more complex model may involve fitting a separate 
mean to each level of the replicated X values. When this is not possible, the more complex model might 
include a higher order polynomial (a curve). Or the complexity may lie in other variables that were not 
used in the model.   

In any case, if a line is a reasonable model, the lack of fit test will produce a relatively large p-value 
(typically > 0.05 is considered sufficiently large). In our case, with a p-value of 0.1187 (Exhibit 8), we have 
little evidence that a line is not sufficient to fit the data. (Note: Sorry for the double negative language, but 
we cannot say we have evidence that the line fits the data – that would be affirming the null hypothesis. 
Furthermore, the p-value is not that big, so we don’t want to fall in love with the line.) 

 Exhibit 8    Lack of Fit Test 

(Note: The Lack Of Fit results display by default only if the 
data set has replicated X values.)  

 

 

 

Given what we have seen so far, a linear model is reasonable, although not perfect. A power law model 
does seem to fit the data. 

 

In the article we have cited, the author claims, but does not test, the notion that the slope of the power law 
regression line should be 2/3. Our estimated slope is 0.5162 (Exhibit 9). Is this close to 2/3 or far from 
2/3, based on the variation in the data? 

 Exhibit 9    Parameter Estimates 

 

 

 

It is easy to test this claim with a simple hypothesis test: 



 

 

 

8 

Ho: the slope is 2/3 
Ha: the slope is different from 2/3 

𝑡 =
0.5162 − 0.6667

0.038744
= −3.88‼ 

Yikes! The data does not support this hypothesis. In fact, a 95% confidence interval (with 21 – 2 = 19 
degrees of freedom) is: 

0.5162 ± 2.093 × 0.03874 = (0.435,0.5973) 

The entire confidence interval (shown again in Exhibit 10) is well below 2/3.   

 

 Exhibit 10    Parameter Estimates with 95% Confidence Intervals 

 

 

 

 

(Right-click over the Parameter Estimates table and select Columns > Lower 95% and Columns > Upper 95%.) 

It would be interesting to examine other data sets claiming this value to see if a slope of 2/3 is reasonable 
for those data sets. 

Other Questions of Interest 

1.  Predictions in the Power Law Model 

Prediction in a power law model is similar to other models, except that we must take the logarithmic 
transformations into account. Suppose we want to estimate the average brain weight (in grams) of 
another species of archosaur with a body weight of about 20 kilograms.   

For our data, the model is: 

Log(𝐵𝑟𝑎𝑖𝑛 𝑊𝑒𝑖𝑔ℎ𝑡) = 0.2151 + 0.5162 × Log (𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡) 

We begin with: 

Log(𝐵𝑟𝑎𝑖𝑛 𝑊𝑒𝑖𝑔ℎ𝑡) = 0.2151 + 0.5162 × Log(20) = 1.7615 

This is NOT a very useful answer! We want to know the brain weight, not the logarithm of the brain 
weight.   

To find the predicted brain weight, we must use the inverse transformation. For the natural logarithmic 
function, the inverse is the exponential function: 

exp(1.7615) = 5.82 𝑔𝑟𝑎𝑚𝑠 = predicted brain weight (don’t forget the units). 

These results are shown in Exhibit 11. 
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 Exhibit 11    Predicting Brain Weight 

 
 
(In Fit Y by X, click on the red triangle for the Linear Fit and select Save Predicteds to save the fitted model to the data table. Then 
create a new column in the data table and enter the formula editor as shown earlier. Select Exp from the Transcendental Functions 
list, and then select Predicted Log(Brain Weight), and click OK. Finally, click to add a new row to the data table, and enter 20 in the 
Body Weight column.) 

 

2.  What Do Positive and Negative Residuals Mean? 

In this context, a positive residual is a species whose brain is larger than would be predicted based on the 
model. A negative residual is a species whose brain is smaller than would be predicted by the model. We 
could speculate that the largest positive residuals might belong to some of the smartest species of 
archosaurs, and the negative residuals belong to some of the dumber species.   

If this is the case, then the Stenonychosaurus is clearly the smartest archosaur (of this group), and the 
Diplodocus and Tyrannosaurus are the least brainy (see Exhibit 12). 

 Exhibit 12    Residual by X Plot with Labels 

(To label points with the row number, select the points on the graph or in the data table. Then select Rows > Label. To 
permanently label points with the value of a column, right-click on the column name in the data table and select Label. 
To reposition labels on a graph, click and drag the label.) 

In the exercise we will look at mammals. Any idea which species the model will indicate is the 
smartest? 
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Summary  

Statistical Insights  

A power law model did fit the data reasonably well. However, the slope suggested by the researcher does 
not seem correct based on this small data set.   

Consider a logarithmic transformation for modeling involving right-skewed data. But keep in mind that the 
predicted response values will be in transformed units. The inverse transformation must be taken in order 
to produce predicted values in original units. 

Always evaluate the quality of a model using residual plots and the lack of fit test before performing 
statistical inference. If model assumptions are violated, the model fit is not appropriate. For example, if 
there is curvature in the residuals, a quadratic model may be required. 

 

Implications 

A word about building consensus in science: It is the ability of the power law to explain a lot of similar 
data sets that gives it its power. Seeing this approach produce good results in many similar situations – 
replication – is how the model gains credibility. A similar analysis involving the brain and body weights of 
mammals is widely available (The Practice of Statistics in the Life Sciences, Second Edition, 2012, Moore 
and Baldi, Example 4.2; The Statistical Sleuth, Second Edition, 2002, Ramsey and Schafer, Case 9.2) 
and will be the basis for the exercises to follow.   

JMP® Features and Hints     

This case used the Distribution platform to display histograms and summary statistics and Fit Y by X to 
model the relationship between two variables. In Fit Y by X, when a line is fit a variety of statistical output 
is produced, including Parameter Estimates, the Summary of Fit, and an ANOVA table. If the data table 
has replicated predictor values, lack of fit test results will also be provided. To explore residuals, select 
“Plot Residuals” from the red triangle for the fitted model.     

The formula editor was used to transform the variables. A number of transformations are available from 
the formula editor. In addition, a utility for transforming multiple variables is available in the Sample Data 
directory under the Help Menu (Open the Teaching Demonstrations outline under Teaching Resources 
(click on the gray icon), and select utilColumnTransformation.) 

Note that in Fit Y by X, transformations are also available from the Fit Special option under the top red 
triangle. This bypasses the need to transform the variables prior to the analysis, and has the added 
advantage of automatically transforming saved predicted values to the original units. 

Also note that as of JMP 11, variables can be dynamically transformed in any dialog window. Right-click 
on the variable in the column selection panel, select Transform and then select the transformation of 
interest (shown on the left in Exhibit 13). This creates a temporary variable. To save the transformed data 
to the data table, right-click on the transformed variable (shown in italics), and select Add to Data Table 
(on the right in Exhibit 13). 
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 Exhibit 13   Dynamic Transformation of Variables 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Exercises    

From The Statistical Sleuth 

Another example of a power law model involves 96 species of mammals (including humans). This also 
involves body weight in kilograms and brain weight in grams. 

The data are available in Archosaur Exercise.jmp. 

1. Does it make sense to take logarithmic transformations of Body Weight and Brain Weight in 

order to perform a linear regression?  

2. Are the assumptions of the linear regression met?  

3. Is our final model a good fit to the data?  

4. Does the slope of 2/3 actually seem to match the data?  

5. (Challenging) Do mammals appear to have generally larger brains than archosaurs, given their 

body size? In other words, is the entire line for the mammals higher than the entire line for the 

archosaurs?  

6. If a species of mammals has a body size of about 20 kilograms, what would you estimate the 

brain weight to be in grams? 

7. Based on the residuals, what would you expect the four smartest mammal species to 

be? Does this fit your intuition?  
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