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Backgammon 
One way ANOVA 

 

Key ideas 

One-Way ANOVA, testing assumptions, F ratio, R2, and basic computations 

Background 

A college professor played an online backgammon program eight games per day, during lunch periods, 
for several days in 1998.  Each day he kept score, positive scores when he won, and negative scores 
when the program won.  Each game can be a simple win for the professor (+1) or the program (-1), but it 
can also be a gammon (± 2) for an extremely one-sided win or loss, and even occasionally a blowout, or 
backgammon (± 3).  Further, there is a doubling cube, which allows the stakes to be doubled and 
redoubled any number of times.  At the end of the 50 days the professor tried to determine if he was 
better than the program.   

The professor then returned in 2011 and played the software 60 more times (eight games/day) and 56 
more times in 2012.  The purpose of the 2011 games was to determine if the program had been 
upgraded, resulting in different daily scores.  The professor continued to play the game in 2012, creating 
a third set of data.   

The Task     

Determine if the program is about the same in 2011 and 2012 as it was in 1998, or if there appear to have 
been upgrades at some point.  Also, determine whether the professor is demonstrably superior in play to 
the program.   

The Data Backgammon.jmp 

The daily results were logged in a data table, with one column for each year.   

1998 Score Scores from the 1998 games (sample size = 50) 
2011 Score Scores from the 2011 games (sample size = 60) 
2012 Score Scores from the 2012 games (sample size = 56) 

A positive score means the professor got the best of the program on that particular day, and a negative 
score means that the program won.  There are zeros as well – occasionally, at the end of the day, the 
score was tied.      

Analysis 

Based on a preliminary look at this data over the three years, it appears that the professor is generally 
besting the program.   

The entire confidence interval for the 1998 scores (0.73 to 3.95) is greater than zero, indicating that in the 
long-run, the professor will average an overall score of 0.73 to 3.95 better than the program (Exhibit 1).  
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 Exhibit 1    Distribution of Scores  

(Analyze > Distribution; enter all three columns as Y, Columns and click OK.  Under the red triangle for each variable select Normal 
Quantile Plot.) 

The similarity of scores for 1998 and 2011 is remarkable (Exhibit 1).  The average scores and confidence 
intervals for the two periods are nearly identical.  The professor had assumed there were upgrades to the 
program (i.e., that the program would perform better) in the period from 1998 to 2011.  If there were 
upgrades, they don’t appear to have been successful.   

The consistency continues in 2012.  However, the average score is slightly lower than in the previous 
years (1.534 versus 2.34 and 2.4) and the resulting confidence interval (-0.14 to 3.21), just barely, 
includes 0. We will be exploring whether these three samples are sufficiently similar that they can be 
combined, and if so, how the final confidence interval will compare to the three individual confidence 
intervals with regard to center and width.  

An important result of this initial peek is that the data has a great “shape” – there is no major skew in the 
data, and there don’t appear to be any serious outliers.  The standard testing procedures (t-tests and 
ANOVA) will work quite well here.   

Based on our preliminary results, a more formal analysis should show two things:  The program is 
consistent from year to year, and the professor is clearly better than the program.   

Formatting the Data for Analysis 

Our first analysis will involve comparing average scores across the three years.  The data table 
Backgammon.jmp has three separate columns, where each column contains the scores for each of the 
years.  A formal statistical analysis in JMP will require stacked data.  That is, the labels (Year) should be 
stacked in one column, with the values (Score) stacked in a separate column (Exhibit 2).   
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 Exhibit 2    Stacking the Three Score Columns  

 

 

 

(Tables > Stack; enter the three score 
columns under Stack Columns.  Change the 
Stacked Data Column name to Score and 
the Source Label Column to Year, and click 
OK. Note: Since each year has a different 
number of observations, the resulting table 
will have some missing values.  These rows 
can be deleted.)  

 

 

The stacked data are also found in BackgammonStacked.jmp. 

Formal Analysis – Step One, Checking Assumptions  

Before performing a formal test, we must check the following assumptions (as much as possible): 

• The data is roughly normal (it already looks great from previous plots, and the normal quantile 
plots in Exhibit 1 provide a more visual confirmation). 

• We have independent observations (this will require a separate discussion below).  

• The sample is a simple random sample, or can be treated as one (if we hope to generalize 
beyond this sample to some population). 

• Finally, the spreads are roughly equal from year to year.  In fact, the standard deviations of all of 
the years look very similar (Exhibit 1).  However, a test of equal spread cannot hurt.   

Four tests for equal variances are conducted (Exhibit 3).  For all of these tests, the hypotheses are: 

• Ho: The spreads are equal.  

• Ha: At least one group has a different spread.   
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 Exhibit 3    Testing for Equal Spread  

 
 
(Analyze > Fit Y by X; 
Select Score as Y, 
Response and Year as X, 
Factor and click OK.  Then, 
select Unequal Variances 
from the red triangle.) 

 

In this case, all of the tests produce large p-values, showing no evidence of unequal spread.  As usual, 
we use the awkward double negative language to avoid affirming the null hypothesis.   

“There is no evidence of unequal spread.” ≠ “The spreads are equal.”   

When we have a large p-value (in this context) the first statement is correct; the second is incorrect.   

In cases where the p-values would lead to different conclusions, the preferred test is Levene’s test (see 
The Statistical Sleuth, 2nd edition, Ramsey and Schafer, 2002).   

What about the assumption of a simple random sample?  To begin with, let’s be clear, we do not have a 
simple random sample.   In fact, for a true simple random sample you must have a population in the form 
of a list, and you must choose elements from the population using a pseudo-random number table or a 
similar method.  The population here is hypothetical at best – perhaps all possible sequences of eight 
games the professor and program could have played.   

Part of the notion of a simple random sample is that it should be representative of the population, the 
second part is that observations should be independent.  In this context there is no reason to believe 
dependence occurred.  So we will act as if we have a simple random sample with independent 
observations.   

Formal Analysis – Are There Differences From Year to Year? 

We are very comfortable that the assumptions have been met – now to the analysis.  Since we have 
three years of data, the formal analysis is a one-way analysis of variance, or ANOVA (Exhibit 4). 
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 Exhibit 4    ANOVA  

 
 
 
 
 
 
 
 
(In the Oneway output 
window, select 
Means/ANOVA from 
the red triangle.) 

 
 
 

 

The hypotheses being tested in the ANOVA table are: 

Ho: All three years have the same mean.  
Ha: At least one year has a different mean.   

The test statistic, the F ratio, is 0.3651, resulting in a p-value of 0.6947 (under Prob > F in Exhibit 4).  
There is no evidence of a difference in average score from year to year.   

The ANOVA procedure produces a pooled estimate of variance, and the resulting standard deviation is 
reported as the Root Mean Square Error in the Summary of Fit table.  Because the standard deviation 
has been modified, and because this estimate of standard deviation is based on 163 degrees of freedom 
(50 -1 + 60 – 1 + 56 – 1), the confidence intervals produced in Exhibit 4 are slightly different than the ones 
produced in the preliminary analysis.   

So, our first question has been answered.  We have no reason to believe that the backgammon program 
was upgraded over the years – the performance of the program does not appear to have changed.  
(We’re assuming that the professor’s skill level has also not changed.)   

Our next task is to determine if the professor is better than the backgammon program.  If the program had 
changed over time, we would need to estimate the professor’s advantage in each time period.  But, since 
the program has not changed, we will throw all of the data together to estimate one interval and perform 
one test.   

Is the Professor Better than the Program? 

When small samples of normal data are combined, the resulting samples tend to look even more normal, 
losing the esoteric patterns common to the original samples (that is, assuming the small samples are all 
drawn from the same underlying normal population).   

This may explain why the combined score data looks so much more normal than the three separate sets 
of data (Exhibit 5). 
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 Exhibit 5    Distribution of the Combined Score Data  

 

(Analyze > Distribution; Select Score as Y, Columns and click OK.  
Under the red triangle next to Score select Normal Quantile Plot.)  

 

 

 

 

 

 

 

 

 

The one-sample t-test provides overwhelming evidence (Exhibit 6) that the professor will have a long-run 
positive score against the program (p-value < 0.0001).   

 Exhibit 6    One-Sample t-Test for the Combined Score  

 

(From the Distribution output window, select Test 
Mean from the red triangle next to Score, and click 
OK in the Test Mean dialog window.)  

 

 

 

 

 

 

 

 

 

 

The overall edge appears to be from 1.18 to 3.00 points per day (i.e., per eight-game session).  This 
interval is naturally narrower than the three individual intervals because it is based on roughly triple the 
sample size.   
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ANOVA Table Computations 

There is a lot to the ANOVA output in Exhibit 4, and making sense of it requires understanding some of 
what is happening behind the scenes.   

ANOVA is a comparison of variances (recall that ANOVA stands for analysis of variance).  In this 
analysis, we wanted to know if the backgammon program had changed over the years.   

Recall our hypotheses for this test: 

Ho: All three years have the same mean. 
Ha: At least one year has a different mean.   

One way to think about this is to consider whether one mean, or three means, best fits the data:    

• If one mean fits the data well – this is consistent with no change to the program.   

• If we must fit more than one mean – this is consistent with a change in performance of the 
program.  (Remember that we’re assuming that the professor’s ability has remained constant.)   

When we fit one mean to the data we get a sample variance, s2.  This is the overall variance of all of the 
data.  When we fit three means to the data, we get three sample variances – each variance is a measure 
of the variation within a particular group.  These within group variances can be pooled to produce the 
pooled sample variance, sp

2.  This quantity, which is a measure of the residual or random error variation, 
is called the Mean Square Error, or MSE.  

We also have a measure of the variance between the means, referred to as Mean Square Groups, or 
MSG.  This is often referred to as Mean Square Model (MSM) or Mean Square Treatment (MST).  If the 
null hypothesis is true (the means are equal), then these two quantities, MSG and MSE, will be roughly 
equal.  That is, the variation between groups will be about the same as the random variation within 
groups.  If the null hypothesis is not true, then MSG will be larger than MSE - the variation between the 
groups will be larger than the random variation. 

Two examples are shown in Exhibit 7.  In the graph on the left we see that the differences in group means 
are small relative to the random variation within groups.  In the graph on the right, the differences 
between the group means appear large in comparison to the random variation. 

 Exhibit 7    Backgammon ANOVA Table  
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So, how do we formally test the null hypothesis?  We compare MSG and MSE by taking the ratio 
(MSG/MSE).  This produces a test statistic, the F Ratio, which follows the F Distribution.  We use a p-
value to represent how extreme our resulting F Ratio is with regard to the F Distribution (for the given 
degrees of freedom).  As with all p-values, a small value (generally < 0.05) provides evidence against the 
null hypothesis. 

Here’s what we can expect to see: 

• When the null hypothesis is true, the between group variance (MSG) ≈ within group 
variance (MSE).  The F Ratio will be small (near 1) and the p-value will be large. 

• When the alternative hypothesis is true, the between group variance (MSG) >> the within group 
variance (MSE).  The F Ratio will be large (greater than 1) and the p-value will be small (< 0.05).  

These results are summarized in an ANOVA table.  The ANOVA table for our backgammon example is 
shown in Exhibit 4, and again in Exhibit 8.  Mean Square Groups (Mean Square Years in this example) is 
13.0480, and Mean Square Error is 35.7396. 

The ratio of these two quantites, the F Ratio, is 0.3651, and the resulting p-value is 0.6947.  As we 
discussed earlier, this high p-value indicates that there is no evidence that the average yearly scores are 
different.   

 Exhibit 8    Backgammon ANOVA Table  

 

 

Completing an ANOVA Table 

Let’s take a closer look at how the F Ratio and other values of an ANOVA table are computed.  We’ll use 
an example in which the data suggest that the alternative hypothesis is true.  

Suppose s = 1.21 and sp = 0.87, k = 4 (there are four groups) and n = 61 (the total sample size is 61).  
This is all of the information required to complete an ANOVA table.   

The ANOVA table:  

Source DF 
Sums of 
squares 

Mean squares F ratio 

Groups k -1 
SSG = SST - 
SSE 

  

Error n - k SSE   

Total n - 1 SST   
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We use s and sp to calculate SST  (Sum of Squares Total) and SSE (Sum of Squares Error). 

𝑆𝑆𝑇 = (𝑛 − 1)𝑠2 and  𝑆𝑆𝐸 = (𝑛 − 𝑘)𝑠𝑝
2 

In this case: 

 k - 1 = 3, n - k = 57, and n - 1=60 

𝑆𝑆𝑇 = (61 − 1)(1.21)2 = 87.846  and  𝑆𝑆𝐸 = (61 − 4)(0.87)2 = 43.143 

So, Sum of Squares Groups, or SSG is: 
 𝑆𝑆𝐺 = 87.846 − 44.703 = 43.143 

When we plug these values into the ANOVA table, we get:  

Source DF Sums of squares Mean squares F ratio 

Groups 3 44.703   

Error 57 43.143   

Total 60 87.846   

 
The Mean Squares and the F Ratio can now be computed as follows: 

Source DF Sums of squares Mean squares F ratio 

Groups a A MSG = A/a MSG/MSE 

Error b B MSE = B/b  

Total a+b A + B   

So we have… 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐺𝑟𝑜𝑢𝑝𝑠 (𝑀𝑆𝐺) =
44.703

3
= 14.902 , and 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =

43.143

57
= 0.757 

The F Ratio, then, is the ratio of MSG and MSE:   𝐹 𝑟𝑎𝑡𝑖𝑜 =
14.902

0.757
= 19.68 

 
The completed ANOVA table: 

Source DF Sums of squares Mean squares F ratio 

Groups 3 44.703 14.901 19.68 

Error 57 43.143 0.757  

Total 60 87.846   

 
The result is an F ratio with 3 degrees of freedom in the numerator and 57 degrees of freedom in the 
denominator.  The F Distribution is scaled based on these degrees of freedom.   
Using a look up table in the back of a textbook or the formula editor in JMP, the p-value is 7.028323e-9 
(Exhibit 9). 
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 Exhibit 9    Distribution of the Combined Data  

  

 

 

 

 

 

 

 

 

 

(Create a new column.  Then, right-click on the column header and select Formula.In the Formula Editor, enter a “1” and then use 
the key pad in the editor to enter “-“. Under Functions (grouped), select Probability > F Distribution.  Enter the values as shown, and 
click OK. If working with a new data table use Rows > Add Rows and type “1” to add 1 row.  The p-value will display.)  

 

In this example, the p-value is extremely small, providing evidence against the null hypothesis.  It appears 
the alternative hypothesis is true (we can reject the null hypothesis that the means are equal).   

Note that R2 = A/(A + B), or SSG/SST.  For this example, R2 (44.703/87.846) is 0.509.  (We’ll come back 
to this in a moment.) 

Now consider the case when the data is consistent with the null hypothesis. 

Suppose s = 1.21 and sp = 1.145, k = 5 (there are five groups) and n = 46 (the total sample size is 46).   

Source DF Sums of squares Mean squares F ratio 

Groups 4 5.578 1.395 1.064 

Error 41 53.751 1.311  

Total 45 59.329   

 

The result is an F ratio with 4 and 41 degrees of freedom.  Using the calculator in JMP, the p-value is 
0.4186.  The R2 is 0.094.  In this case, we do not have evidence against the null hypothesis (we can’t 
conclude that the means are different). 
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Summary  

Statistical Insights      

It is useful to understand the relationship between the F ratio and R2.  It turns out that:  

𝐹 =
𝑅2

1 − 𝑅2
 ×  

𝑛 − 𝑘

𝑘 − 1
 

This illustrates a couple of important ideas.  If the null hypothesis is true, then the population R2, denoted 

𝜌2, is zero, and the sample R2 stays close to zero.  Of course, R2 cannot actually be zero, and the 

sample sizes and R2 just balance out in such a way that the F ratio stays around 1.0.  The p-value will be 
uniform (0,1) no matter the sample size.   

However, if the alternative hypothesis is true, 𝜌2 has some fixed positive value, and as the sample size 

increases, R2 approaches 𝜌2.  This means that the F ratio will grow approximately in proportion to n – k.   

As the sample size grows, the F ratio grows and the p-value becomes smaller and smaller.   

Implications       

Suppose the null hypothesis is true, then: 

s2 ≈ sp
2, F ≈ 1.0, p-values are uniform (0,1), and R2 ≈ 0.0 for any sample size.   

Suppose the alternative hypothesis is true, then: 

s2 >> sp
2, F >> 1.0, p-values are biased toward smaller values relative to a uniform (0,1), and R2  > 0.0.  

As the sample size increases, F grows in proportion to n – k and the p-values become more biased 
toward low values.   

JMP® Features and Hints      

In this case we used the Distribution platform to compare distributions and confidence intervals for three 
years of the professor’s backgammon scores, then used Tables > Stack to stack the scores into one 
column for analysis.  We used Fit Y by X and ANOVA to test the hypothesis that the average scores were 
the same across the three years, after using Unequal Variances to test the assumption that the 
population variances were equal.   

We used the Distribution platform and a one-sample t-Test on the combined data to test the hypothesis 
that the professor scores higher than the program.  Finally, we used the formula editor to compute the 
area under the curve for the F Distribution (i.e., p-values) for F ratios computed by hand.  

Note:   An alternative to the Formula Editor for calculating p-values is the Probability and Distribution 
Calculator Expanded, which can be downloaded from jmp.com/modules.  This calculator, which was 
written using JSL (the JMP Scripting Language), can be used to calculate the area under the curve for a 
number of probability distributions.   
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Exercises    

1.  A partial ANOVA table is provided below: 
 

Source DF Sums of squares Means squares F ratio 

Groups 7    

Error  455.17   

Total 64 534.34   

 

a. Complete the ANOVA table. 
b. What are s and sp?   
c. What is R2?   
d. What is the sample size? 
e. How many groups are there? 
f. Should you reject the null hypothesis? 

 
2.  Suppose s = 2.32, sp = 1.65, k = 3, and n = 210.   
 

Source DF 
Sums of 
squares 

Means squares F ratio 

Groups     

Error     

Total     

 

a. Complete the ANOVA table. 
b. What is R2?   
c. Should you reject the null hypothesis? 

 

3.  Open the file Drug.jmp from the Sample Data directory in JMP.  To locate this file, go to the help menu 
in JMP, select Sample Data, then click Open the Sample Data Directory button. 

Thirty subjects were given one of three drugs.  The response, “y” is a measure of some response.  
We are interested in testing whether there are differences between the three drugs.  

a. State the null and alternative hypotheses for this test. 
b. Test the assumption that the population variances are equal.  What can we conclude? 
c. Use ANOVA to test the hypothesis that the average response was the same for the 

three drugs.  What is the p-value for the test?  Based on this p-value, what decision can 
we make relative to the null hypothesis?  In nonstatistical terms, what can we conclude? 
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